화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.84, 141-149, April, 2020
Citrate/melamine functionalized gold nanoparticles for concurrent determination of allopurinol and its major metabolite, oxypurinol in plasma and pharmaceuticals
E-mail:
In the present work, a simple approach for colorimetric determination of allopurinol and its major metabolite oxypurinol is presented using gold nanoparticles as a probe. Gold nanoparticles were synthesized using the citrate reduction method and then functionalized using melamine (mel-AuNPs). The nanoparticles were characterized using UV-vis spectrophotometry, dynamic light scattering and transmission electron microscopy. The bare AuNPs capped with citrate anions (cit-AuNPs) gave a linear response towards allopurinol and oxypurinol within the range 0.20-40.0 μM and 0.25-25.0 μM respectively; however the melamine functionality on the AuNPs exhibited specific response for oxypurinol from 0.10 to 15.0 μM. This enabled development of a simple approach for the quantitation of the metabolite using mel-AuNPs, while the quantitation of allopurinol was carried out using the regression parameters of cit-AuNPs and the calculated amount of metabolite. For method optimization parameters such as the pH, incubation time and effect of ionic strength of the medium which can cause aggregation of nanoparticles were studied. The methodology was found to yield reliable results as evident from the validation results. The application of the method is demonstrated by analyzing allopurinol from tablet formulations and the drug and its metabolite from spiked plasma samples.
  1. Bothra S, Kumar R, Pati RK, Kuwar A, Choi HJ, Sahoo SK, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 149, 122 (2015)
  2. Modi RP, Mehta VN, Kailasa SK, Sens. Actuators B-Chem., 195, 562 (2014)
  3. Guo Y, Wang Z, Qu W, Shao H, Jiang X, Biosens. Bioelectron., 26, 4064 (2011)
  4. Valluru G, Georghiou PE, Sleem HF, Perret F, Montasser I, Grandvoinnet A, Brolles L, Coleman AW, Supramol. Chem., 26, 561 (2014)
  5. Li ZJ, Zheng XJ, Zhang L, Liang RP, Li ZM, Qiu JD, Biosens. Bioelectron., 68, 668 (2015)
  6. Rawat KA, Surati KR, Kailasa SK, Anal. Methods 6, 6, 5972 (2014)
  7. Mahapatra N, Datta S, Halder M, J. Photochem. Photobiol. Chem., 275, 72 (2014)
  8. Bahram M, Madrakian T, Alizadeh S, J. Pharm. Anal., 7, 411 (2017)
  9. Palazzo G, Facchini L, Mallardi A, Sens. Actuators B-Chem., 161, 366 (2012)
  10. Kailasa SK, Koduru JR, Desai ML, Park TJ, Snghal RK, Basu H, Trends Anal. Chem., 105, 106 (2018)
  11. Terkeltaub RA, N. Engl. J. Med., 349, 1647 (2003)
  12. Pea F, Contrib. Nephrol., 147, 35 (2005)
  13. Day RO, Graham GG, Hicks M, McLachlan AJ, Stocker SL, Williams KM, Clin. Pharmacokinet., 46, 623 (2007)
  14. Reinders MK, Nijdam LC, van Roon EN, Movig KLL, Jansen TLTA, van de Laar MAFJ, Brouwers JRBJ, J. Pharm. Biomed. Anal., 45, 312 (2007)
  15. Tada H, Fujisaki A, Itoh K, Suzuki T, J. Clin. Pharm. Ther., 28, 229 (2003)
  16. Liu X, Ni XJ, Shang DW, Zhang M, Hu JQ, Qiu C, Luo FT, Wen YG, J. Chromatogr. B, 941, 10 (2013)
  17. Kasawar G, Razzak M, Zaheer Z, Farooqui M, J. Liq. Chromatogr. Relat. Technol., 34, 26 (2010)
  18. Rathod DM, Patel KR, Mistri HN, Jangid AG, Shrivastav PS, Sanyal M, J. Pharm. Anal., 7, 56 (2017)
  19. Iqbal M, Ezzeldin E, Herqash RN, Alam O, PLoS One, 14, e02137 (2019)
  20. Sun X, Cao W, Bai X, Yang X, Wang E, Anal. Chim. Acta, 442, 121 (2001)
  21. Perez-Ruiz T, Martı’nez-Lozano C, Tomas V, Galera R, J. Chromatogr. B, 798, 303 (2003)
  22. Wessel T, Lanvers C, Fruend S, Hempel G, J. Chromatogr. A, 894, 157 (2000)
  23. Chi H, Liu B, Guan G, Zhang Z, Han MY, Analyst, 135, 1070 (2010)
  24. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z, Biosens. Bioelectron., 34, 112 (2012)
  25. Song J, Wu F, Wan Y, Ma L, Food Control, 50, 356 (2015)
  26. Abedalwafa MA, Li Y, Ni C, Yang G, Wang L, Anal. Methods, 11, 3706 (2019)
  27. Liu G, Ren H, Guan Y, Dai R, Chai C, Anal Sci., 31, 113 (2015)
  28. Kumar N, Seth R, Kumar H, Anal. Biochem., 456, 43 (2014)