화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.3, 556-562, March, 2020
Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?
E-mail:,
2,5-furandicarboxylic acid (FDCA), one of the key building block for replacing petroleum-derived terephthalic acid, is utilized as the source of bioplastics, pharmaceuticals. Herein, free-standing Cu(OH)2 and CuO nanowires as electrode were examined to disclose the effects of crystal structure and chemical formation based on copper oxide in electrocatalytic 5-Hydroxymethylfurfural (HMF) oxidation to FDCA in 0.1M KOH solution. We introduced on threedimensional copper foam (CuF) with high porosity as copper source and substrate with high conductivity free-standing Cu(OH)2 and CuO nanowires (NWs) on the substrate by inorganic polymerization and calcination for electrochemical HMF oxidation. This was enabled by square-planar coordination (δx2-y2) of Cu2+ ions in (001) crystal faces of Cu(OH)2 crystal. As a result of stacking with hydrogen bonds, free-standing Cu(OH)2 NWs on the substrate was formed. There was no change in the morphology of the nanowire arrays, but the active sites from a plane area per surface- exposed Cu atoms by transformation of Cu(OH)2 to CuO NWs increased.
  1. Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
  2. Eerhart AJJE, Faaij APC, Patel MK, Energy Environ. Sci., 5, 6407 (2012)
  3. Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411 (2007)
  4. Agarwal B, Kailasam K, Sangwan RS, Elumalai S, Renew. Sust. Energ. Rev., 82, 2408 (2018)
  5. Zhang Z, Deng K, ACS Catal., 5, 6529 (2015)
  6. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ, Catal. Today, 160(1), 55 (2011)
  7. Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su SP, Yin DL, Chem. Eng. J., 283, 1315 (2016)
  8. Li N, Tang S, Meng X, J. Mater. Sci. Technol., 31, 30 (2015)
  9. Ait Rass H, Essayem N, Besson M, ChemSusChem, 8, 1206 (2015)
  10. Cha HG, Choi KS, Nat. Chem., 7, 328 (2015)
  11. Ozcan L, Yalcin P, Alagoz O, Yurdakal S, Catal. Today, 281, 205 (2017)
  12. Jiang N, You B, Boonstra R, Rodriguez IMT, Sun Y, ACS Energy Lett., 1, 386 (2016)
  13. Tong X, Yu L, Chen H, Zhuang X, Liao S, Cui H, Catal. Commun., 90, 91 (2017)
  14. Huang YB, Chen MY, Yan L, Guo QX, Fu Y, ChemSusChem, 7, 1068 (2014)
  15. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG, Appl. Catal. B: Environ., 242, 85 (2019)
  16. Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78 (2019)
  17. Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Zhang L, Peng Q, RSC Adv., 9, 878 (2019)
  18. Wen XG, Zhang WX, Yang SH, Langmuir, 19(14), 5898 (2003)
  19. Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 82, 3316 (2003)
  20. Li Z, Chen Y, Xin Y, Zhang Z, Sci. Rep., 5, 16115 (2015)
  21. Zhang WX, Wen XG, Yang SH, Inorg. Chem., 42(16), 5005 (2003)
  22. Kim C, Cho KM, Al-Saggaf A, Gereige I, Jung HT, ACS Catal., 8, 4170 (2018)
  23. Ming H, Pan KM, Liu Y, Li HT, He XD, Ming J, Ma Z, Kang ZH, J. Cryst. Growth, 327(1), 251 (2011)
  24. Wang P, Qi C, Hao L, Wen P, Xu X, J. Mater. Sci. Technol., 35, 285 (2019)
  25. Meng L, Tian W, Wu F, Cao F, Li L, J. Mater. Sci. Technol., 35, 1740 (2019)
  26. Huang J, Li H, Zhu Y, Cheng Q, Yang X, Li C, J. Mater. Chem. A, 3, 8734 (2015)
  27. Kang MJ, Kang YS, J. Mater. Chem. A, 3, 15723 (2015)
  28. Hou CC, Fu WF, Chen Y, ChemSusChem, 9, 2069 (2016)
  29. Casella IG, Gatta M, J. Electroanal. Chem., 494(1), 12 (2000)
  30. Yu J, Ran J, Energy Environ. Sci., 4, 1364 (2011)
  31. Leng WH, Zhang Z, Zhang JQ, Cao CN, J. Phys. Chem. B, 109(31), 15008 (2005)
  32. Casanova O, Iborra S, Corma A, ChemSusChem, 2, 1138 (2009)