Korean Journal of Chemical Engineering, Vol.37, No.3, 556-562, March, 2020
Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?
E-mail:,
2,5-furandicarboxylic acid (FDCA), one of the key building block for replacing petroleum-derived terephthalic acid, is utilized as the source of bioplastics, pharmaceuticals. Herein, free-standing Cu(OH)2 and CuO nanowires as electrode were examined to disclose the effects of crystal structure and chemical formation based on copper oxide in electrocatalytic 5-Hydroxymethylfurfural (HMF) oxidation to FDCA in 0.1M KOH solution. We introduced on threedimensional copper foam (CuF) with high porosity as copper source and substrate with high conductivity free-standing Cu(OH)2 and CuO nanowires (NWs) on the substrate by inorganic polymerization and calcination for electrochemical HMF oxidation. This was enabled by square-planar coordination (δx2-y2) of Cu2+ ions in (001) crystal faces of Cu(OH)2 crystal. As a result of stacking with hydrogen bonds, free-standing Cu(OH)2 NWs on the substrate was formed. There was no change in the morphology of the nanowire arrays, but the active sites from a plane area per surface- exposed Cu atoms by transformation of Cu(OH)2 to CuO NWs increased.
Keywords:Cu(OH)2 Nanowire;CuO Nanowire;Inorganic Polymerization;Electrocatalytic Oxidation;5-Hydroxymethylfurfural
- Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
- Eerhart AJJE, Faaij APC, Patel MK, Energy Environ. Sci., 5, 6407 (2012)
- Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411 (2007)
- Agarwal B, Kailasam K, Sangwan RS, Elumalai S, Renew. Sust. Energ. Rev., 82, 2408 (2018)
- Zhang Z, Deng K, ACS Catal., 5, 6529 (2015)
- Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ, Catal. Today, 160(1), 55 (2011)
- Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su SP, Yin DL, Chem. Eng. J., 283, 1315 (2016)
- Li N, Tang S, Meng X, J. Mater. Sci. Technol., 31, 30 (2015)
- Ait Rass H, Essayem N, Besson M, ChemSusChem, 8, 1206 (2015)
- Cha HG, Choi KS, Nat. Chem., 7, 328 (2015)
- Ozcan L, Yalcin P, Alagoz O, Yurdakal S, Catal. Today, 281, 205 (2017)
- Jiang N, You B, Boonstra R, Rodriguez IMT, Sun Y, ACS Energy Lett., 1, 386 (2016)
- Tong X, Yu L, Chen H, Zhuang X, Liao S, Cui H, Catal. Commun., 90, 91 (2017)
- Huang YB, Chen MY, Yan L, Guo QX, Fu Y, ChemSusChem, 7, 1068 (2014)
- Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG, Appl. Catal. B: Environ., 242, 85 (2019)
- Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78 (2019)
- Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Zhang L, Peng Q, RSC Adv., 9, 878 (2019)
- Wen XG, Zhang WX, Yang SH, Langmuir, 19(14), 5898 (2003)
- Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 82, 3316 (2003)
- Li Z, Chen Y, Xin Y, Zhang Z, Sci. Rep., 5, 16115 (2015)
- Zhang WX, Wen XG, Yang SH, Inorg. Chem., 42(16), 5005 (2003)
- Kim C, Cho KM, Al-Saggaf A, Gereige I, Jung HT, ACS Catal., 8, 4170 (2018)
- Ming H, Pan KM, Liu Y, Li HT, He XD, Ming J, Ma Z, Kang ZH, J. Cryst. Growth, 327(1), 251 (2011)
- Wang P, Qi C, Hao L, Wen P, Xu X, J. Mater. Sci. Technol., 35, 285 (2019)
- Meng L, Tian W, Wu F, Cao F, Li L, J. Mater. Sci. Technol., 35, 1740 (2019)
- Huang J, Li H, Zhu Y, Cheng Q, Yang X, Li C, J. Mater. Chem. A, 3, 8734 (2015)
- Kang MJ, Kang YS, J. Mater. Chem. A, 3, 15723 (2015)
- Hou CC, Fu WF, Chen Y, ChemSusChem, 9, 2069 (2016)
- Casella IG, Gatta M, J. Electroanal. Chem., 494(1), 12 (2000)
- Yu J, Ran J, Energy Environ. Sci., 4, 1364 (2011)
- Leng WH, Zhang Z, Zhang JQ, Cao CN, J. Phys. Chem. B, 109(31), 15008 (2005)
- Casanova O, Iborra S, Corma A, ChemSusChem, 2, 1138 (2009)