화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.1, 1-14, February, 2020
Drag reduction characterizations of turbulent channel flow with surfactant additive by proper orthogonal decomposition and wavelet transform
E-mail:,
To explore the drag-reducing characteristics of turbulent channel flows with surfactant additive at relatively high Reynolds number from the perspectives of energy spectrum and multi-scale resolution, the two-dimensional fluctuation velocity fields of turbulent channel flows with/without surfactant additive at Reynolds number of Reτ = 590 obtained by large eddy simulation are decomposed by two-dimensional proper orthogonal decomposition (POD) and wavelet transform (WT). POD results show that the low-order eigenmode occupying most energy can be used to capture large-scale vortex structures, and fewer eigenmodes can be employed to capture coherent structures (CSs) in surfactant solution case compared with that in the Newtonian fluid. The spatial structures depicted by POD eigenmode state that buffer layer has a tendency to move towards the center of the channel in surfactant solution. Through wavelet analysis of fluctuation velocity fields in the streamwise-wall-normal planes, it is found that CSs mainly distribute in the near-wall region and the amount of CSs is smaller in surfactant solution. The results of local Reynolds shear measure (LRM) show that local contribution of CSs to the intermittency in turbulent channel flow of surfactant solution decreases, indicating the inhibition of intermittency by surfactant additive. In order to investigate the drag-reducing characteristics at different locations along the wall-normal direction, the fluctuation velocity fields in the streamwise-spanwise planes at different wall-normal locations are decomposed by two-dimensional WT. The results show that surfactant additive mainly affects the flow in the near-wall region (especially in the buffer layer) and thus induces drag reduction effect.
  1. Adrian RJ, Christensen KT, Liu ZC, Exp. Fluids, 29, 275 (2000)
  2. Bacry E, Arneodo A, Frisch U, Gagne Y, Hopfinger E, Turbulence and Coherent Structures, Springer, Dordrecht, pp. 203-215 1991.
  3. Ball KS, Sirovich L, Keefe LR, Int. J. Numer. Methods Fluids, 21, 585 (1991)
  4. Beris AN, Avgoust M, Souvaliotis A, J. Non-Newtonian Fluid Mech., 44, 197 (1992)
  5. Bernero S, Fiedler HE, Exp. Fluids, 29, S274 (2000)
  6. Bewersdprff HW, Ohlendorf D, Colloid Polym. Sci., 226, 941 (1988)
  7. Burger ED, Munk WR, Wahl HA, J. Pet. Technol., 34, 377 (1982)
  8. Cai WH, Li FC, Zhang HN, J. Fluid Mech., 665, 334 (2010)
  9. Cai WH, Li FC, Zhang HN, Wang Y, Wang L, Sci. China: Phys. Mech. Astron., 55, 854 (2012)
  10. Camussi R, Guj G, J. Fluid Mech., 348, 177 (1997)
  11. Daubechies I, Commun. Pure Appl. Math., 41, 909 (1988)
  12. Dean RB, J. Fluids Eng., 100, 215 (1978)
  13. Farge M, Rabreau G, Comptes Rendus De L'Academie Des Sciences Serie li 307, 1479-1486 1988.
  14. Fukagata K, Iwamoto K, Kasagi N, Phys. Fluids, 14, L73 (2002)
  15. Li FC, Yu B, Wei JJ, Kawaguchi Y, Drag Reduction by Surfactant Additives, John Wiley & Sons Singapore Pte. Ltd., Singapore 2012.
  16. Li FC, Wang DZ, Kawaguchi Y, Hishida K, Exp. Fluids, 36, 131 (2004)
  17. Li FC, Wang L, Cai WH, Chin. Phys. B, 24, 074701 (2015)
  18. Li FC, Kawaguchi Y, Yu B, Wei JJ, Hishida K, Int. J. Heat Mass Transf., 51(3-4), 835 (2008)
  19. Li FC, Kawaguchi Y, Hishida K, Oshima M, Exp. Fluids, 40, 218 (2006)
  20. Li FC, Kawaguchi Y, Segawa T, Hishida K, Phys. Fluids, 17, 075104 (2005)
  21. Li L, Wavelet Analysis of Wall Turbulence, Ph.D Thesis, Tsinghua University, China 2000.
  22. Lumley JL, Atmospheric Turbulence and Radio Wave Propagation - Proceedings of the International Colloquium, pp.166-178 1967.
  23. Mallat SG, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674 (1989)
  24. Meneveau C, J. Fluid Mech., 232, 469 (1991)
  25. Moin P, Moser RD, J. Fluid Mech., 200, 471 (1989)
  26. Moster RD, Kim J, Mansour NN, Phys. Fluids, 11, 943 (1999)
  27. National Institute of Advanced Industrial Science and Technology, 2007.
  28. Saracco G, Tchamitchian P, Detection and Inverse Problem, Marseille-Luminy, France, pp. 222-241 1989.
  29. Shi LL, Liu YZ, Wan JJ, Exp. Therm. Fluid Sci., 34, 28 (2010)
  30. Sirovich L, Quant. Appl. Math., 45, 561 (1987)
  31. Sirovich L, Quant. Appl. Math., 45, 573 (1987)
  32. Sirovich L, Quant. Appl. Math., 45, 583 (1987)
  33. Thais L, Tejada-Martinez AE, Gatski TB, Mompeana G, Phys. Fluids, 22, 013103 (2010)
  34. Toms BA, Proc. 1st Int. Congress on Rheology, vol. II, North Holland Publish Co., Amsterdam, pp. 135-142, 1949.
  35. Walker DT, Tiederman WG, J. Fluid Mech., 218, 377 (1990)
  36. Wang L, Zheng ZY, Bao JQ, Wei TZ, Cai WH, Li FC, Can. J. Phys., 95, 1115 (2017)
  37. Wang L, Zheng ZY, Cai WH, Li FC, Adv. Mech. Eng., 9, 1 (2017)
  38. Wang Y, Yu B, Wu X, Prog. Comput. Fluid Dyn., 11, 149 (2011)
  39. Wang Y, Yu B, Wu X, Wang P, Int. J. Heat Mass Transf., 55(17-18), 4849 (2012)
  40. Wang Y, Cai WH, Zheng X, Zhang HN, Li FC, Can. J. Phys., 95, 1271 (2017)
  41. Warholic MD, Schmidt GM, Hanratty TJ, J. Fluid Mech., 338, 1 (1999)
  42. Willmarth WW, Lu SS, J . Fluid Mech, 55, 65 (1972)
  43. Wu X, Yu B, Wang Y, Adv. Mech. Eng., 2013, 514325 (2013)
  44. Yang X, Study on Direct Numerical Simulations of Turbulent Convective Heat Transfer Influenced by Buoyancy, 2010.