화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.2, 159-164, February, 2020
Comparison of the Physical Properties and in vivo Bioactivities of Flatwise-Spun Silk Mats and Cocoon-Derived Silk Mats for Guided Bone Regeneration
E-mail:
The main flaw of silkworm cocoon originated membranes for guided bone regeneration (GBR) techniques is that the maximum size of the membrane is determined by the size of the cocoon. Flatwise-spun silk does not have any limitation to its production size. The objective of this study was to compare flatwise-spun silk mats with cocoon-derived silk mats for a GBR technique. Tensile strength, scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy and sericin contents analysis were done for in vitro test. Bone regeneration ability was tested in the critical sized defect of the animal model. In this study, flatwise-spun silk mats showed lower tensile strength and similar tensile strain to a cocoon-derived commercialized silk mat (TDI). Compared to TDIs, the flatwise-spun silk mats showed a similar second derivative spectrum, but they showed an increased abundance of the random coil and helix structures in the FT-IR spectra because of a higher content of sericin. In animal model experiments, the bone volume (BV) after the application of a flatwise-spun silk mat was similar to the volume observed after the application of a TDI. Both groups showed a significantly higher BV compared to an unfilled control group (P<0.05). Considering that there was no size limitation in producing flatwise-spun silk mats, their clinical indications could be much wider than cocoon-derived silk mats.
  1. Jo YY, Oh JH, Appl. Sci., 8, 2157 (2018)
  2. Kwon KJ, Seok H, Appl. Sci., 8, 1214 (2018)
  3. Choi NR, Sandor GK, Kim YD, Appl. Sci., 8, 2048 (2018)
  4. Cortellini P, Tonetti MS, Periodontol., 22, 104 (2000)
  5. Oxford GE, Quintero G, Stuller CB, Gher ME, J. Clin. Periodontol., 24, 464 (1997)
  6. Karapataki S, Hugoson A, Falk H, Laurell L, Kugelberg CF, J. Clin. Periodontol., 27, 333 (2000)
  7. Goissis G, Junior EM, Marcantonio RAC, Lia RCC, Cancian DCJ, de Carvalho WM, Biomaterials, 20, 27 (1999)
  8. Sapru S, Das S, Mandal M, Ghosh AK, Kundu SC, Acta Biomater., 78, 137 (2018)
  9. Silva SS, Kundu B, Lu S, Reis RL, Kundu SC, Macromol. Biosci., 19, e18002 (2019)
  10. Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S, Int. J. Biol. Macromol., 134, 838 (2019)
  11. Kim JW, Jo YY, Kweon HY, Kim DW, Kim SG, Maxillofac. Plast. Reconstr. Surg., 40, 10 (2018)
  12. Jo YY, Kweon H, Kim DW, Baek K, Kim MK, Kim SG, Chae WS, Choi JY, Rotaru H, Sci. Rep., 7, 15589 (2017)
  13. Jo YY, Kweon H, Kim DW, Kim MK, Kim SG, Kim JY, Chae WS, Hong SP, Park YH, Lee SY, Choi JY, Sci. Rep., 7, 42441 (2017)
  14. Ha YY, Park YW, Kweon HY, Jo YY, Kim SG, Macromol. Res., 22(9), 1018 (2014)
  15. Kim SG, Kim MK, Kweon H, Jo YY, Lee KG, Lee JK, Maxillofac. Plast. Reconstr. Surg., 38, 11 (2016)
  16. Kim JW, Jo YY, Kim JY, Oh J, Yang BE, Kim SG, Appl. Sci., 9, 1208 (2019)
  17. Kweon HY, Jo YY, Lee KG, Kim KY, US Patent 0168778 (2018).
  18. Hori S, Shimizu I, Appl. Entomology Zoology, 25, 177 (1990)
  19. Kong J, Yu S, Acta Biochimica Biophysica Sinica, 39, 549 (2007)
  20. Dong A, Huang P, Caughey WS, Biochemistry, 29, 3303 (1990)
  21. Jo YY, Kim SG, Kwon KJ, Kweon H, Chae WS, Yang WG, Lee EY, Seok H, Int. J. Mol. Sci., 18, 858 (2017)
  22. Jo YY, Kim DW, Choi JY, Kim SG, Sci. Rep., 9, 3448 (2019)
  23. Kim JW, Jo YY, Kim JY, Oh J, Yang BE, Kim SG, Maxillofac. Plast. Reconstr. Surg., 41, 16 (2019)
  24. Mondal M, Trivedy K, Kumar SN, Casp. J. Envir. Sci., 5, 63 (2007)
  25. Mandal BB, Priya AS, Kundu S, Acta Biomater., 5, 3007 (2009)
  26. Garagiola J, Maiorana C, Ghiglione V, Marzo G, Santoro F, Szabo GG, J. Craniofac. Surg., 18, 1296 (2007)