화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 409-420, March, 2020
Cationic surfactant modified cellulose nanocrystals for corrosion protective nanocomposite surface coatings
E-mail:
Cellulose nanocrystals (CNCs), a robust renewable and green nanomaterial, has potential as an excellent reinforcing and multifunctional filler for polymers used in coating and other applications. However, the high polarity of CNCs limits its interfacial interaction and dispersibility with several non-polar polymers. These limitations severely constrain it from transferring its functional attributes to polymeric materials. In this paper, three differentiated cationic surfactants: cetyltetramethylammoniumbromide (CTAB, C16 single chain), dimethyldidodecylammonium bromide (DDAB, C12 double chains) and dimethyldihex-adecylammonium (DHAB, C16 double chains) were used to modify the surface of CNCs. The modifications were confirmed using Fourier-Transform Infrared Spectroscopy (FTIR) and elemental analysis. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) of the samples revealed that the crystallinities and the thermal stabilities of the modified CNCs were preserved. Corrosion protection studies of epoxy nanocomposites containing the native and surfactant modified CNCs were conducted using model steel specimens via salt spray and electrochemical test methods. The results reported herein indicated that the use of surfactant modified CNCs resulted in an enhanced dispersibility in the epoxy matrices as compared to native CNCs. The improved dispersion assisted in retardation of the penetration of electrolyte that caused a remarkable improvement in the metal corrosion protection performance, as compared to unfilled or native CNC filled epoxy coatings.
  1. Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S, Corrosion Sci., 53, 89 (2011)
  2. Leidheiser H, Corrosion, 38(7), 374 (1982)
  3. Chang CH, Huang TC, Peng CW, Yeh TC, Lu HI, Hung WI, Weng CJ, Yang TI, Yeh JM, Carbon N. Y., 50, 5044 (2012)
  4. Zhang H, Wang J, Liu X, Wang Z, Wang S, Ind. Eng. Chem. Res., 20(30), 10172 (2013)
  5. Yeh JM, Liou SJ, Lin CY, Cheng CY, Chang YW, Lee KR, Chem. Mater., 14(1), 154 (2002)
  6. Dutta D, Ganda ANF, Chih JK, Huang CC, Tseng CJ, Su CY, Nanoscale, 10(26), 12612 (2018)
  7. Chen-Yang YW, Yang HC, Li GJ, Li YK, J. Polym. Res., 11(4), 275 (2005)
  8. Montemor MF, Surf. Coat. Technol., 258, 17 (2014)
  9. Nazari H, Shi X, Industrial Applications for Intelligent Polymers and Coatings, Springer International Publishing, Cham, pp.377 2016.
  10. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J, Chem. Soc. Rev., 40(7), 3941 (2011)
  11. Zhang Z, Surface Modification of Cellulose Nanocrystal for Advanced Applications, University of Waterloo, 2017.
  12. Dufresne A, Mater. Today, 16(6), 220 (2013)
  13. Panchal, Ogunsona E, Mekonnen T, Processes, 7(1), 10 (2018)
  14. Mekonnen TH, Ah-Leung T, Hojabr S, Berry R, Colloids Surf. A: Physicochem. Eng. Asp., 583, 123949 (2019)
  15. Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, et al., Mater. Today, 21(7), 720 (2018)
  16. Ogunsona EO, Panchal P, Mekonnen TH, Compos. Sci. Technol., 184, 107884 (2019)
  17. Tang JT, Sisler J, Grishkewich N, Tam KC, J. Colloid Interface Sci., 494, 397 (2017)
  18. Panchal P, Mekonnen TH, Nanoscale Adv., 1(7) (2019)
  19. Eyley S, Thielemans W, Nanoscale, 6(14), 7764 (2014)
  20. Kan KHM, Li J, Wijesekera K, Cranston ED, Biomacromolecules, 14(9), 3130 (2013)
  21. Arredondo J, Jessop PG, Champagne P, Bouchard J, Cunningham MF, Green Chem., 19(17), 4141 (2017)
  22. Wu D, Li W, Zhao Y, Deng Y, Zhang H, Zhang H, Dong L, Chinese J. Polym. Sci., 33(3), 444 (2015)
  23. Sun FF, Liu W, Dong ZX, Deng YL, Chem. Eng. J., 330, 774 (2017)
  24. Habibi Y, Lucia LA, Rojas OJ, Chem. Rev., 110(6), 3479 (2010)
  25. Kaboorani A, Riedl B, Ind. Crop. Prod., 65, 45 (2015)
  26. Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ, Curr. Opin. Colloid Interface Sci., 29, 57 (2017)
  27. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A, Biomacromolecules, 7(6), 1687 (2006)
  28. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
  29. Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P, Cellulose, 18(2), 257 (2011)
  30. Kaushik M, Fraschini C, Chauve G, Putaux JL, Moores A, The Transmission Electron Microscope: Theory and Applications, InTech, pp. 1-35 2015.
  31. Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY, Cellulose, 22(3), 1753 (2015)
  32. Trinh BM, Mekonnen T, Polymer, 155, 64 (2018)
  33. Huang S, Zhou L, Li MC, Wu Q, Zhou D, Materials, 10(1), 80 (2017)
  34. Kumar A, Negi YS, Choudhary V, Bhardwaj NK, J. Mater. Phys. Chem., 2(1), 1 (2014)
  35. Tang Z, Li W, Lin X, Xiao H, Miao Q, Huang L, Chen L, Wu H, Tang Z, Li W, Lin X, Xiao H, Miao Q, Huang L, Chen L, Wu H, Polymers, 9(12), 421 (2017)
  36. Salajkova M, Berglund LA, Zhou Q, J. Mater. Chem., 22(37), 19798 (2012)
  37. Lin N, Bruzzese C, Dufresne A, ACS Appl. Mater. Interfaces, 4(9), 4948 (2012)
  38. Johnson RK, Zink-Sharp A, Glasser WG, Renneckar SH, Frazier CE, Esker AR, Roman M, TEMPO-OXIDIZED NANOCELLULOSES: SURFACE MODIFICATION AND USE AS ADDITIVES IN CELLULOSIC NANOCOMPOSITES, 2010.
  39. Wang W, Bai Q, Liang T, Bai H, Liu X, Polymers, 9(12), 455 (2017)
  40. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y, ACS Sustain. Chem. Eng., 3(5), 821 (2015)
  41. Su Y, Burger C, Ma HY, Chu B, Hsiao BS, Biomacromolecules, 16(4), 1201 (2015)
  42. O’sullivan AC, Cellulose, 4, 173 (1997)
  43. Boissou F, Muhlbauer A, De Oliveira Vigier K, Leclercq L, Kunz W, Marinkovic S, Estrine B, Nardello-Rataj V, Jerome F, Green Chem., 16, 2463 (2014)
  44. Kumari L, Li WZ, Kulkarni S, Wu KH, Chen W, Wang C, Vannoy CH, Leblanc RM, Nanoscale Res. Lett., 5(1), 149 (2010)
  45. Sui G, Zhao Y, Zhang Q, Fu Q, RSC Adv., 6(60), 54785 (2016)
  46. Chaudhary S, Rohilla D, Mehta SK, Mater. Res. Express, 1, 15011 (2014)
  47. Hoeng F, Denneulin A, Neuman C, Bras J, J. Nanoparticle Res., 17(6), 244 (2015)
  48. Hu Z, Berry RM, Pelton R, Cranston ED, ACS Sustain. Chem. Eng., 5(6), 5018 (2017)
  49. Riddick TM (Thomas Moore), Control of colloid stability through zeta potential :with a closing chapter on its relationship to cardiovascular disease, Zeta-Meter, Inc., by Livingston Pub. Co, Wynnewood, Pa, 1968.
  50. Hunter RJ, Zeta Potential in Colloid Science, Elsevier, London; Toronto; London; Toronto: Academic Press, 1981.
  51. Cheng D, Wen Y, An X, Zhu X, Cheng X, Zheng L, Nasrallah JE, J. Bioresour. Bioprod., 1(3), 114 (2016)
  52. Akhlaghi SP, Zaman M, Mohammed N, Brinatti C, Batmaz R, Berry R, Loh W, Tam KC, Carbohydr. Res., 409, 48 (2015)
  53. Letchford, Jackson, Wasserman B, Ye, Hamad W, Burt H, Int. J. Nanomed., 6, 321 (2011)
  54. Pourhashem S, Vaezi MR, Rashidi A, Reza Bagherzadeh M, Eval. Program., 115, 78 (2017)
  55. Yue L, Maiorana A, Khelifa F, Patel A, Raquez JM, Bonnaud L, Gross R, Dubois P, Manas-Zloczower I, Polymer, 134, 155 (2018)
  56. Tan B, Thomas NL, J. Membr. Sci., 514, 595 (2016)