AIChE Journal, Vol.44, No.11, 2410-2422, 1998
Two-dimensional model for proton exchange membrane fuel cells
A 2-D mathematical model for the entire sandwich of a proton-exchange membrane fuel cell including the gas channels was developed. The self-consistent model for porous media was used for the equations describing transport phenomena int he membrane, catalyst layers, and gas diffusers, while standard equations of Navier-Stokes, energy transport, continuity, and species concentrations are solved in the gas channels. A special handling of the transport equations enabled us to use the same numerical method int he unified domain consisting of the gas channels, gas diffusers, catalyst layers and membrane. It also eliminated the need to prescribe arbitrary or approximate boundary conditions at the interfaces between different parts of the fuel cell sandwich. By solving transport equations, as well as the equations for electrochemical reactions and current density with the membrane phase potential, polarization curves under various operating conditions were obtained. Modeling results compare very well with experimental results from the literature. Oxygen and water vapor mole fraction distributions in the coupled cathode gas channel-gas diffuser were studied for various operating current densities. Liquid water velocity distributions in the membrane and influences of various parameters on the cell performance were also obtained.