화학공학소재연구정보센터
Langmuir, Vol.35, No.50, 16438-16443, 2019
A Most Enantioselective Chiral Surface: Tartaric Acid on All Surfaces Vicinal to Cu(110)
Enantioselective chemistry on intrinsically chiral surfaces is the quintessential form of structure-sensitive surface chemistry, arising purely from the dissymmetry of the surface structure. Identification or design of chiral surface structures that maximize enantioselectivity for a given processes is extremely challenging because of the limited magnitude of the enantiospecific interaction energetics of chiral molecules with chiral surfaces. Using spherical Cu single crystals exposing surfaces with a continuous two-dimensional distribution of crystallographic orientations, we mapped the enantiospecific surface reaction kinetics of tartaric acid decomposition across the surface orientation space. These measurements reveal both the mechanistic origin of enantioselectivity and identify the structural features of the most enantiospecific surface orientation.