화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.50, 19746-19753, 2019
Unlocking Acyclic pi-Bond Rich Structure Space with Tetraethynylethylene-Tetravinylethylene Hybrids
Literature reports describe tetraethynylethylene (TEE) as unstable but tetravinylethylene (TVE) as stable. The stabilities of these two known compounds are reinvestigated, along with those of five unprecedented TEE-TVE hybrid compounds. The five new C-10 hydrocarbons possess a core, tetrasubstituted C=C bond carrying all possible combinations of vinyl and ethynyl groups. A unified strategy is described for their synthesis, whereupon cross-conjugated ketones are dibromo-olefinated then cross-coupled. Due to an incorrect but nonetheless widely held belief that acyclic pi-bond rich hydrocarbons are inherently unstable, a standardized set of robustness tests is introduced. Whereas only TVE survives storage in neat form, all seven hydrocarbons are remarkably robust in dilute solution, generally surviving exposure to moderate heat, light, air, and acid. The first X-ray crystal structure of TEE is reported. Subgroups of hybrids based upon conformational preferences are identified through electronic absorption spectra and associated computational studies. These new acyclic pi-bond rich systems have extensive, untapped potential for the production of stable, conjugated carbon-rich materials.