Journal of Physical Chemistry B, Vol.124, No.3, 531-543, 2020
Influence of Electronic Polarization on the Spectral Density
Accurate spectral densities are necessary for computing realistic exciton dynamics and nonlinear optical spectra of chromophores in condensed-phase environments, including multichromophore pigment-protein systems. However, due to the significant computational cost of computing spectral densities from first principles, requiring many thousands of excited-state calculations, most simulations of realistic systems rely on treating the environment as fixed-point charges. Here, using a number of representative systems ranging from solvated chromophores to the photoactive yellow protein (PYP), we demonstrate that the quantum mechanical (QM) electronic polarization of the environment is key to obtaining accurate spectral densities and line shapes within the cumulant framework. We show that the QM environment can enhance or depress the coupling of fast chromophore degrees of freedom to the energy gap, altering the electronic-vibrational coupling and the resulting vibronic progressions in the absorption spectrum. In analyzing the physical origin of peaks in the spectral density, we identify vibrational modes that couple the electron and the hole as being particularly sensitive to the QM screening of the environment. For PYP, we reveal the need for careful determination of the appropriate QM region to obtain reliable spectral densities. Our results indicate that the QM polarization of the environment can be crucial not just for excitation energies but also for electronic-vibrational coupling in complex systems with implications for the correct modeling of linear and nonlinear optical spectroscopy in the condensed phase as well as energy transfer in pigment-protein complexes.