Journal of Bioscience and Bioengineering, Vol.128, No.5, 544-550, 2019
Control of AtaA-mediated bacterial immobilization by casein hydrolysates
Acinetobacter sp. Tol 5 exhibits an autoagglutinating nature and high adhesiveness to various abiotic surfaces through its bacterionanofiber protein AtaA. We have developed new bacterial immobilization methods utilizing the high adhesiveness of AtaA. We previously reported that salt is essential for the adhesiveness of AtaA. In the current study, we unexpectedly found that Tol 5 cells were not immobilized onto polyurethane foam support during growth in LB medium although AtaA was properly expressed and displayed onto the cell surface. The adhesion of Tol 5 resting cells was not affected by sugars but drastically inhibited by yeast extract and casein hydrolysates such as tryptone and casamino acids technical grade (CA-T). Some amino acids, which are major components of CA-T, partially inhibited the adhesion of Tol 5 cells. Experimental results suggested that oligopeptides might effectively inhibit the cell adhesion. Immobilized cells onto the support through AtaA were detached in CA-T solution. Also, the detached cells could be re-immobilized onto the support without impairing of their adhesiveness by replacing CA -T solution to a basal salt medium. Microscopic observation revealed that breaking of AtaA-mediated cell-cell interaction is important for the detachment of Tol 5 cells from the support. CA-T also inhibited AtaA-mediated autoagglutination and dispersed cell clumps through AtaA. This is the first report on adhesion inhibitors against AtaA and suggests that casein hydrolysates like CA-T would be a powerful tool for controlling AtaA-mediated bacterial immobilization. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.
Keywords:Adhesion;Autoagglutination;Immobilization;Trimeric autotransporter adhesin;Acinetobacter;Adhesion inhibitor;Casein hydrolysate;Dispersion