화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.1, 25-29, February, 2020
고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향
Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior
E-mail:
초록
본 연구에서는 롤 공정으로 제작된 고분자(polydimethylsiloxane, PDMS)/그래핀(graphene) 복합재료를 기판으로 하여 간단한 표면처리 공정을 통해 센서를 구현하였고, 이 센서의 성능과 거동에 대한 고찰을 실시하였다. 고분자와 그래핀 파우더를 혼합한 전구체를 3-롤 공정으로 제조하였고, 이를 2-롤 공정에 도입하여 고분자/그래핀 기판 소재를 제조하였다. 나아가, 간단한 표면처리 공정을 통하여 센서의 요체가 되는 환형 다당류(cyclodextrin, CD)를 도입하였다. 표면처리의 유효성의 적외선 분광기를 통해서 확인하였고, 전기 신호 전달의 가능성을 옴의 법칙을 통하여 분석하였다. 간단한 형태의 센서를 구현하여, 분석 물질(methyl paraben, MePRB)을 도입하였을 때, 아주 낮은 농도 수준(10 nM)까지 감지 신호를 얻을 수 있었다. 특히, 그래핀의 함량이 낮을 경우 센서 측정이 어려움을 확인할 수 있었다. 이는, 높은 그래핀 함량에서 보여주는 그래핀 입자의 배향이 다소 억제되어 발생하였을 것으로 사료된다. 이는 첨가제의 물리적인 배향이 센서의 성능에 영향을 미칠 수 있다는 것을 의미한다. 이 정보는 향후 유사한 시스템의 센서를 구현하는 연구에 도움이 될 것으로 기대된다.
In this study, a polymer/graphene hybrid composite was prepared by a simple roll-method and a simple sensor was produced by a convenient surface engineering procedure. The sensor performance was examined and the effect of graphene content on the sensing behavior was monitored. A polymer (polydimethylsiloxane, PDMS) paste containing graphene powder was prepared by a three-roll apparatus and polymer/graphene hybrid composite was produced by a two-roll technique. The sensing medium, cyclodextrin (CD) was introduced by a convenient bio-conjugation method. The efficacy of surface modification was confirmed by FT-IR spectroscopy and the ohmic relation was observed on composite surfaces. An analyte (e.g., methyl paraben, MePRB) at a 10 nM concnetration could be detected. When the graphene loading was low, the sensor performance was relatively poor. This was attributed to the absence of graphene alignments, which were observed for the composites having a high graphene loading. This indicates that the sensor performance was influenced by physical alignments of the filler. This article can provide important information for future research on developing sensing devices.
  1. Hwang Y, Park JY, Kwon OS, Joo S, Lee CS, Bae J, Appl. Surf. Sci., 429, 258 (2018)
  2. Kwon OS, Lee SH, Park SJ, An JH, Song HS, Kim T, Oh JH, Bae J, Yoon H, Park TH, Jang J, Adv. Mater., 25(30), 4177 (2013)
  3. An JH, Park SJ, Kwon OS, Bae J, Jang J, ACS Nano, 7, 10563 (2013)
  4. Sohn H, Kim S, Shin W, Lee JM, Lee H, Yun DJ, Moon KS, Han IT, Kwak C, Hwang SJ, ACS Appl. Mater. Interfaces, 10, 2688 (2018)
  5. Cho EH, Kim MJ, Sohn H, Shin WH, Won JY, Kim Y, Kwak C, Lee CS, Woo YS, Nanoscale, 10, 628 (2018)
  6. Sohn H, Woo YS, Shin W, Yun DJ, Lee T, Kim FS, Hwang J, Appl. Surf. Sci., 419, 63 (2017)
  7. Kwon OS, Song HS, Park SJ, Lee SH, An JH, Park JW, Yang H, Yoon H, Bae J, Park TH, Jang J, Nano Lett., 15, 6559 (2015)
  8. Hwang Y, Park JY, Lee CS, Kwon OS, Park SH, Bae J, Compos. Pt. A-Appl. Sci. Manuf., 107, 55 (2018)
  9. Fatiha M, Leila L, Leila N, Eddine KD, J. Incl. Phenom. Macrocycl. Chem., 76, 379 (2013)
  10. Bae J, Hwang Y, Park SJ, Ha JH, Kim HJ, Jang A, An J, Lee CS, Park SH, Polymer, 10, 951 (2018)