Current Applied Physics, Vol.20, No.1, 49-57, 2020
Extending the response spectrum of organic photodetectors by quaternary active layer method with complementary absorption spectra
In this work, we report a new method for extending the response spectra of organic photodetectors (OPDs) by incorporating PBDT-TT-C and PBDT-TT-F in the P3HT:PC61BM. The effects of PBDT-TT-C and PBDT-TT-F incorporation on the optical and electrical properties of OPDs were investigated, It was found that when the mass ratio of P3HT:PBDT-TT-F:PBDT-TT-C:PC61BM was 12:2:2:8, the response spectrum of the active layer was extended to 780 nm. The responsivity (R) and external quantum efficiency (EQE) of the OPDs reached 340, 376, 315 mA/W and 67%, 88%, 85% under 630, 530, and 460 nm illumination and -1 V bias, respectively, and the detectivity (D*) reached 10(12) Jones. The results show that the inclusion of an appropriate amount of donor material with similar chemical structure and complementary absorption spectrum can reduce the influence of the doping material on the micro-morphology of the original film while improving the absorption of the spectrum. The interaction between the donor materials promotes the generation of photogenerated carriers and increases the photocurrent of the OPDs. In addition, the incorporation of the different component promotes crystallization of the film, resulting in a reduction in dark current of the OPDs.
Keywords:Organic photodetectors;Quaternary bulk heterojunction;Micromorphology;Energy transfer;Charge transfer