- Previous Article
- Next Article
- Table of Contents
Applied Microbiology and Biotechnology, Vol.104, No.3, 907-914, 2020
Specific heavy metal/metalloid sensors: current state and perspectives
Heavy metal(loid)s play pivotal roles in regulating physiological and developmental aspects in living organisms depending on their concentration. For example, a trace amount of heavy metal(loid)s is essential for living organisms, but heavy metal(loid)s in high concentrations negatively affect their physiology and development. Because of rapid industrial developments, heavy metal(loid)s have been accumulating in environmental systems, thereby becoming a threat to human health and the earth's ecosystem. Thus, the development of tools to quantify and monitor heavy metal(loid)s in environmental systems has become essential. Typically, risk has been determined through instrument-based analysis, regardless of the shortcomings regarding expense and duration. Nowadays, the need for alternative tools, besides instrumental analysis, to detect heavy metals has prompted the development of new techniques, and many different methods have been reported from various research areas, including new techniques based on electrochemistry and biological systems. Nonetheless, it seems that the gap between laboratory and fieldwork is still greater than it should be when it comes to applying these systems. In this mini-review, we discuss the current status of heavy metals/metalloid detection techniques, with an emphasis on biosensors. Moreover, we discuss the advantages and disadvantages as well as the mechanisms behind newly developed sensors and make suggestions to improve applicability and to develop new objective targeting sensors. Although many different types of metal(loid) sensors are available, we focused on metal sensors based on biological systems. Additionally, we suggest potent approaches to developing new biosensor systems based on current metal sensor mechanisms.
Keywords:Heavy metal sensors;Chemosensors;Electrochemical-based sensors;Bacterial cell-based sensors;Metalloregulators;Split-protein systems