화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.1, 61-69, January, 2020
크림프가 없는 탄소섬유직물/에폭시 복합재료의 동역학, 인장, 굴곡 및 충격 특성에 미치는 프리프레그 Angle-Ply의 영향
Effect of Prepreg Angle-Ply on the Dynamic, Mechanical, Tensile, Flexural, and Impact Properties of Non-Crimp Carbon Fiber Fabric/Epoxy Composites
E-mail:
초록
일방향(UD) 프리프레그는 섬유방향으로 이방성을 띠고 있기 때문에 탄소섬유의 배향각은 탄소섬유/에폭시 복합재료의 기계적, 열적 특성에 중요한 역할을 한다. [0°], [0°/90°], [0°/45°/90°], [0°/30°/60°/90°] 적층 순서에 따라 서로 다른 angle-ply를 갖는 크림프가 없는 탄소섬유직물/에폭시 복합재료를 압축성형으로 제조하고, 그들의 특성에 미치는 프리프레그 angle-ply 영향을 조사하였다. [0°] 복합재료는 가장 높은 동역학적, 인장, 굴곡 및 충격 특성을 나타낸 반면, [90°] 복합재료는 가장 낮은 특성을 나타냈다. [0°/90°], [0°/45°/90°], [0°/30°/60°/90°] 복합재료는 프리프레그 angle-ply에 따라 [0°]와 [90°] 복합재료 사이의 특성을 나타내었다. 본 연구는 크림프가 없는 탄소섬유직물강화 복합재료의 특성 제어를 위해 프리프레그 angle-ply 디자인이 중요함을 가리킨다
Since unidirectional (UD) prepregs are anisotropic in the fiber alignment direction, the alignment angle of carbon fibers plays a significant role in the mechanical and thermal properties of carbon fiber/epoxy composites. Non-crimp carbon fiber fabric/epoxy composites with different angle-plies of [0°], [0°/90°], [0°/45°/90°], and [0°/30°/60°/90°] stacking sequences were prepared by compression molding. The effect of prepreg angle-ply on the properties of resulting composites was explored. The [0°] composite exhibited the highest dynamic mechanical, tensile, flexural and impact properties, whereas the [90°] composite exhibited the lowest properties. The properties of the [0°/90°], [0°/45°/90°], and [0°/30°/60°/90°] composites were intermediate between the [0°] and [90°] composites, depending on the angle-plies consisting of the composites. The present study indicates that prepreg angle-ply design should be importantly considered to manipulate their properties of non-crimp carbon fiber fabric-reinforced composites.
  1. Yang G, Park M, Park SJ, Compos. Commun., 14, 34 (2019)
  2. Hwang DK, Cho DH, J. Ind. Eng. Chem., 80, 335 (2019)
  3. Go SH, Kim HG, Shin HJ, Lee MS, Yoon HG, Kwac LK, Carbon Lett., 21, 23 (2017)
  4. Yu T, Zhang Z, Song S, Bai Y, Wu D, Compos. Struc., 225, 111147 (2019)
  5. Strong AB, Fundamental of composite manufacturing: Materials, methods, and application, 2nd Edition, Society of Manufacturing Engineers, Dearborn, MI, USA, 2008.
  6. Yuan Y, Yao X, Liu B, Yang H, Imtiaz H, Compos. Struc., 176, 729 (2017)
  7. VenuMadhav VV, Gupta AVSSKS, Murthy VB, Mater. Today: Proc., 5, 6045 (2018)
  8. Timmerman JF, Tillman MS, Hayes BS, Seferis JC, Composites Part A, 33, 323 (2002)
  9. Botelho EC, Pardini LC, Rezende MC, Mater. Sci., 41, 7111 (2006)
  10. Wu X, Fuller JD, Longana ML, Wisnom MR, Composites Part A, 111, 62 (2018)
  11. Lee JM, Kim BM, Ko DC, Compos. Struc., 213, 144 (2019)
  12. Wulfsberg J, Herrmann A, Ziegmann G, Lonsdorfer G, Stob N, Fette M, Proc. Eng., 18, 1601 (2014)
  13. Nguyen NQ, Mehdikhani M Straumit I Gorbatikh L, Lessard L, Lomov SV, Composites Part A, 104, 14 (2018)
  14. Khan LA, Kausar A, Day RJ, Aero. Sci. Technol., 65, 100 (2017)
  15. Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A, Composites Part B, 173, 106906 (2019)
  16. Ma Y, Jin S, Ueda M, Yokozeki T, Yang Y, Kobayashi F, Kobayashi H, Sugahra T, Hamada, H, Composites Part B, 154, 90 (2018)
  17. Siddiqui NA, Khan SU, Ma PC, Li CY, Kim JK, Composites Part A, 42, 1412 (2011)
  18. Czel G, Pimenta S, Wisnom MR, Robinson P, Compos. Sci. Technol., 106, 110 (2015)
  19. Newcomb BA, Polym. Test, 77, 105859 (2019)
  20. Stark W, Polym. Test, 32, 231 (2013)
  21. Forintos N, Czigany T, Composites Part B, 162, 331 (2019)
  22. Rahman M, Ramakrishna S, Prakash JRS, Tan DCG, Mater. Process. Technol., 89-90, 292 (1999)
  23. Cherniaev A, Zeng Y, Cronin D, Montesano J, Polym. Test, 76, 365 (2019)
  24. Nonn S, Kralovec C, Schagerl M, Composites Part A, 115, 57 (2018)
  25. Sabiston T, Li B, Kang J, Liang J, Engler-Pinto C, Proc. Struc. Integ., 17, 666 (2019)
  26. Crossman FW, Wang ASD, Compos. Mater., 14, 71 (1980)
  27. Leguillon D, Marion G, Harry R, Lecuyer F, Compos. Sci. Technol., 61, 377 (2001)
  28. Fuller JD, Wisnom MR, Composites Part A, 69, 64 (2015)