화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.1, 1-5, January, 2020
탄소섬유 및 무기질 소재를 충전한 하이브리드 고분자개질 방수아스팔트
Hybrid Waterproofing Polymer-modified Asphalt Filled with Carbon Fiber and Inorganic Materials
E-mail:
초록
본 연구에서는 하이브리드 방수 개질아스팔트에 충전되는 충전재와 적정조성을 도출하였다. 탄소섬유(2.5%)와 스테아릭산-코팅 탄산칼슘(2.5%)의 적정조성비를 가진 하이브리드 충전재가 첨가된 하이브리드 방수 개질아스팔트의 경우에, 하이브리드 충전재가 없는 기본조성 또는 기본조성과 기존 충전재인 탄산칼슘의 5% 조성비를 가지는 방수 개질아스팔트와 다르게, KS F 3211의 인장강도, 신장률 및 인열강도의 요구조건을 만족하였다. 또한 기본조성과 방수 개질아스팔트의 기존 충전재인 탄산칼슘의 5% 조성비를 가지는 방수 개질아스팔트의 경우에는 수압이 0.3 N/mm2 경우에 투수되어서 KS F 4935의 투수저항성능 시험의 요구조건을 만족시키지 못하였으나, 적정조성비를 가진 하이브리드 방수 개질아스팔트 시편에 대한 투수저항성능 시험에서는 0.4 N/mm2의 수압에서 투수가 되었음에도 불구하고, 수압이 0.3 N/mm2 경우에 투수되지 않아서 투수저항성능에서 KS F 4935를 만족시켰다.
In this study, an optimal composition of hybrid fillers was sought to be filled in hybrid waterproofing polymer-modified asphalt. The hybrid waterproofing polymer-modified asphalt filled with carbon fiber (2.5%) and stearic acid-coated CaCO3 (2.5%), which was turned out the optimal filler composition, satisfied the requirements of tensile strength, elongation and tearing strength of KS F 3211 unlike a waterproofing polymer-modified asphalt with a basic composition without the hybrid fillers or with 5% CaCO3 as a conventional filler. In addition, in case of the specimen of waterproofing polymer-modified asphalt with a basic composition, filled with 5% CaCO3 as a conventional filler, the requirement of water pressure of water penetration resistance (i.e., 0.3 N/mm2) was not satisfied according to KS F 4935. However, in case of the specimen of the hybrid waterproofing polymer-modified asphalt filled with carbon fiber (2.5%) and stearic acid-coated CaCO3 (2.5%), the requirement of water pressure of water penetration resistance was satisfied according to KS F 4935, even though water even penetrates at the water pressure of 0.4 N/mm2
  1. Wang Q, Zhang X, Dong W, Gui H, Gao J, Lai J, Liu Y, Huang F, Song Z, Qiao J, Mater. Lett., 61, 1174 (2007)
  2. Choi JW, Hwang Y, Korean J. Mater. Res., 20(9), 467 (2010)
  3. Rai US, Singh RK, Mater. Lett., 58, 235 (2003)
  4. Cardone F, Frigio F, Ferrotti G, Canestrari F, J. Traffic Transp. Eng., 2, 373 (2015)
  5. Mazzoni G, Stimilli A, Cardone F, Canestrari F, Constr. Build. Mater., 131, 496 (2017)
  6. Arabani M, Shabani a, Hamedi GH, J. Mater. Civil Eng., 31, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002821 (2019).
  7. Li F, Hua Y, Qu CB, Ji JH, Li YQ, Hu N, Fu SY, Composites Part B, 139, 216 (2018)
  8. Jia Z, Li T, Chiang FP, Wang L, Compos. Sci. Technol., 154, 53 (2018)
  9. Jiang D, Smith DE, Addit. Manuf., 18, 84 (2017)
  10. Khattak MJ, Khattab A, Rizvi HR, Zhang P, Constr. Build. Mater., 30, 257 (2012)
  11. Santagata E, Baglieri O, Tsantilis L, Dalmazzo D, Procedia-Soc. Behav. Sci., 53, 546 (2012)
  12. Xiao F, Amirkhanian A, Amirkhanian SN, J. Mater. Civil Eng., 23, 423 (2011)
  13. Amirkhanian A, Xiao F, Amirkhanian SN, IJPRT, 4, 281 (2011)
  14. Sheng Y, Zhou B, Zhao JZ, Tao N, Yu KF, Tian YM, Wang ZC, J. Colloid Interface Sci., 272(2), 326 (2004)
  15. Adedeji A, Grunfelder T, Bates FS, Macosko CW, Polym. Eng. Sci., 36, 17107 (1996)
  16. Becker Y, Mendez MP, Rodriguez Y, Vis. Tecnol., 9, 39 (2001)
  17. Siqueira DG, Bras J, Dufresne A, Biomolecules, 10, 425 (2009)
  18. Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD, Bull. Mater. Sci., 33, 277 (2010)
  19. Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD, Bull. Mater. Sci., 33, 277 (2010)
  20. Kundie F, Azhari CH, Muchtar A, Ahmad ZA, J. Phys. Sci., 29, 141 (2018)
  21. Cintil jC, Jithin J, Mathew L, Joachim K, Thomas S, Ind. Crop. Prod., 56, 246 (2014)
  22. Krishnan A, Jose KC, Rohith KR, George KE, Ind. Crop. Prod., 71, 173 (2015)
  23. Bahar E, Ucar N, Onen A, Wang YJ, Oksuz M, Ayaz O, Ucar M, Demir A, J. Appl. Polym. Sci., 125(4), 2882 (2012)
  24. Li M, Yang Y, Liu M, Guo X, Zhou S, Constr. Build. Mater., 93, 995 (2015)