화학공학소재연구정보센터
Clean Technology, Vol.25, No.4, 275-282, December, 2019
초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성
Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods
E-mail:
초록
본 연구는 초임계 이산화탄소 및 유기용매를 이용하여 동결건조된 붕장어로부터 초임계 이산화탄소 및 유기용매를 이용하여 오일을 추출하고 그 특성을 파악하였다. 초임계 이산화탄소의 경우 압력(25, 30 MPa) 및 온도(45, 55 ℃) 조건을 변화시켜 실험을 수행하였으며, 초임계 이산화탄소의 유량(27 g min-1)은 실험 중 일정하게 유지되었다. 유기용매로는 헥산(hexane)을 사용하였다. 오일 추출 수율의 경우 55 ℃, 30 MPa에서 추출한 오일이 37.73 ± 0.14%로 가장 높은 수율을 나타내었다. 추출된 오일의 지방산 조성은 가스 크로마토그래피를 이용하여 분석하였으며, mystric acid, palmitic acid, palmitoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)가 붕장어 오일의 주요 지방산으로 확인되었다. 산가, 과산화물가 및 유리지방산을 측정함으로써 추출된 붕장어 오일의 산화 안정성을 평가하였으며, 55 ℃, 30 MPa에서 추출한 오일로부터 최상의 산화 안정성을 확인하였다. 소비자들의 선호도에 직접적인 영향을 끼치는 색도의 경우는 초임계 이산화탄소를 통해 추출된 오일이 유기용매를 이용하여 추출된 오일보다 뛰어난 색도를 나타냄을 확인할 수 있었다. 붕장어로부터 초임계 이산화탄소를 이용하여 오일을 추출하게 되면 유기용매를 사용한 방법보다 더 나은 경제적 이익을 가져올 수 있으며, 초임계 이산화탄소를 이용할 경우 후처리 공정이 없기 때문에 더 친환경적인 오일의 추출법임을 확인하였다.
In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.
  1. Lee E, Kim S, Cho G, “Nutritional Component and Health in the Fishery Resources of the Coastal and Offshore Waters in Korea” (1977).
  2. Kim Y, Myoung J, Kim Y, Han K, Kang C, Kim J, Ryu J, The marine fishes of Korea., Vol. 222. 2001.
  3. Choi JH, Rhim CH, Bae TJ, Byun DS, Yoon TH, Bull. Korean Fish. Soc., 18, 439 (1985)
  4. Ryu KY, Shim SL, Kim W, Jung MS, Hwang IM, Kim JH, Hong CH, Jung CH, Kim KS, J. Korean Soc. Food Sci. Nutr., 38(8), 1069 (2009)
  5. Kim JS, Oh KS, Lee JS, Kor. J. Fish Aquat. Sci., 34(6), 678 (2001)
  6. Ranathunga S, Rajapakse N, Kim SK, Eur. Res. Technol., 222(3-4), 310 (2006)
  7. Heu MS, Lee TS, Kim HS, Jee SJ, Lee JH, Kim HJ, Yoon MS, Park SH, Kim JS, J. Korean Soc. Food Sci. Nutr., 37(4), 477 (2008)
  8. Kang ST, Kong CS, Cha YJ, Kim JT, Oh KS, Kor. J. Fish Aquat. Sci., 35(3), 259 (2002)
  9. Kim HY, Lim YI, Korean J. Food Cook Sci., 19(3), 396 (2003)
  10. Yoo BS, Lee HJ, Ko SR, Yang DC, Byun SY, Korea T. Biotechnol. Bioeng., 15(1), 80 (2000)
  11. Joung SN, Kim SY, Yoo KP, Clean Technol., 7(1), 13 (2001)
  12. Turner C, King JW, Mathiasson L, J. Chromatogr. A, 936(1-2), 215 (2001)
  13. Chun BS, Institut National Polytechnique.
  14. Kang KY, Ahn DH, Wilkinson GT, Chun BS, Korean J. Chem. Eng., 22(3), 399 (2005)
  15. Timon M, Ventanas J, Martin L, Tejeda J, Garcia C, J. Agr. Food Chem., 46(12), 5143 (1998)
  16. Taylor DL, Larick DK, J. Agr. Food Chem., 43(9), 2369 (1995)
  17. Kim HS, Lee SY, Kim BY, Lee EK, Ryu JH, Lim GB, Biotechnol Bioproc. E., 9(6), 447 (2004)
  18. Woolfenden EA, McClenny WA, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Compendium Method TO-17: (1999).
  19. Bligh EG, Dyer WJ, Can. J. Biochem. Phys., 37(8), 911 (1959)
  20. Haq M, Getachew AT, Saravana PS, Cho YJ, Park SK, Kim MJ, Chun BS, Korean J. Chem. Eng., 34(8), 2255 (2017)
  21. William H, Official methods of analysis of rnational. AOAC official method. 2000.
  22. AOCS, Official methods and recommended practices of the AOCS (2017).
  23. AOCS, “Official method Cd 3d-63: acid value” (1999).
  24. Firestone D, “AOCS Official Method Cd 8-53: Peroxide Value-Acetic Acid-Chloroform Method”. AOCS Cd: 8-53 (2009).
  25. Society, A. O. C., AOCS Official Method. AOCS official method. 2009: AOCS.
  26. Lee BC, Kim JD, Hwang KY, Lee YY, Korean Chem. Eng. Res., 27(4), 522 (1989)
  27. Ferdosh S, Sarker ZI, Norulaini N, Oliveira A, Yunus K, Chowdury AJ, Akanda J, Omar M, J. Food Process. Pres., 39(4), 432 (2015)
  28. Cho HS, Park BH, Korean J. Soc. Food Sci., 16(2), 135 (2000)
  29. Lee SM, Yun JH, Chun BS, Clean Technol., 17(3), 266 (2011)
  30. Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith DM, Sporns P, volume 1: Water, proteins, enzymes, lipids, and carbohydrates. Handbook of food analytical chemistry. 2005: John Wiley & Sons.
  31. Boran G, Karacam H, Boran M, Food Chem., 98(4), 693 (2006)
  32. Bimbo AP, Inform, 9(5) (1998)
  33. Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S, Invest. Ophth. Vis. Sci., 44(6), 2694 (2003)
  34. Stahl E, Schuetz E, Mangold HK, J. Agr. Food Chem., 28(6), 1153 (1980)
  35. Friedrich JP, List GR, J. Agr. Food Chem., 30(1), 192 (1982)
  36. Noriega-Rodriguez J, Ortega-Garcia J, Angulo-Guerrero O, Garcia H, Medina-Juarez L, Gamez-Meza N, CYTA-J. Food, 7(3), 173 (2009)