Macromolecular Research, Vol.27, No.12, 1185-1192, December, 2019
Effective Phosphorus/Phosphorus-Nitrogen Fire Retardants Applied to Biocomposites Based on Polypropylene-Wood Flour: Flammability, Thermal Behavior, and Mechanical Properties
E-mail:,
By adding diammonium phosphate (DAP) or aluminum diethyl phosphinate (OP) as flame retardants, flame retardancy of composites based on polypropylene and wood flour (PP-WF) improved significantly. A loading of 25 wt% DAP achieved a UL-94 V-0 rating as well as LOI value of 29%, which increased by 52.6% compared with that of the PP-WF composite alone. A 30 wt% OP loading provided a rating of UL-94 HB standard, and achieved LOI value of 28%. Meanwhile, the PP-WF composite without flame retardant, completely burned to the sample holder clamp with low LOI value (19%). Thermal properties of the PP-WF composite with and without DAP and OP flame retardants, were investigated using TGA and DSC. Flame retardant performance was also studied, through the morphology and chemical structure of residual char by TGA, FTIR, SEM, and XPS analyses. There was interaction between DAP and the composite, which played a key role in maintaining mechanical properties of the material.
Keywords:polypropylene/wood flour composite;polymer composite flame retardancy;thermal stability;phosphorus/phosphorusnitrogen flame retardant;fire retardant performance
- Kozłowski R, Władyka-Przybylak M, Polym. Adv. Technol., 19, 446 (2018)
- Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E, Polym. Adv. Technol., 66, 2218 (2006)
- Summerscales J, Dissanayake NPJ, Virk AS, Hall WA, Compos. Pt. A-Appl. Sci. Manuf., 41, 1329 (2010)
- Islam MN, Haque MM, Huque MM, Ind. Eng. Chem. Res., 48(23), 10491 (2009)
- Devi RR, Maji TK, Ind. Eng. Chem. Res., 51(10), 3870 (2012)
- Guan YH, Huang JQ, Yang JC, Shao ZB, Wang YZ, Ind. Eng. Chem. Res., 54(13), 3524 (2015)
- Bai G, Guo C, Li L, Constr. Build. Mater., 50, 148 (2014)
- Wilkie CA, Morgan AB, Fire Retardancy of Polymeric Materials, CRC Press, New York, 2010.
- Zhang ZX, Zhang J, Lu BX, Xin ZX, Kang CK, Kim JK, Compos. Part B-Eng., 43, 150 (2012)
- Wang W, Zhang S, Wang F, Yan Y, Li J, Zhang W, Polym. Compos., 37, 666 (2016)
- Arao Y, Nakamura S, Tomita Y, Takakuwa K, Umemura T, Tanaka T, Polym. Degrad. Stabil., 100, 79 (2014)
- Garcia M, Hidalgo J, Garmendia I, Garcia-Jaca J, Compos. Part B-Appl. Sci. Manuf., 40, 1772 (2009)
- Zhao P, Guo C, Li L, Constr. Build. Mater., 170, 193 (2018)
- Yin H, Sypaseuth FD, Schubert M, Schoch R, Schartel B, Polym. Adv. Technol., 30, 187 (2019)
- Nguyen TH, Hoang DQ, Kim JH, Macromol. Res., 26(1), 22 (2018)
- Nie S, Wu W, Pan Y, Dong X, Li B, Wang DY, Fire Mater., 42, 703 (2018)
- Hoang D, Nguyen T, An H, Kim J, Macromol. Res., 24(6), 537 (2016)
- Wang Y, Zhang L, Yang Y, Cai X, J. Therm. Anal. Calorim., 122, 1331 (2015)
- Chindaprasirt P, Hiziroglu S, Waisurasingha C, Kasemsiri P, Polym. Compos., 36, 604 (2015)
- Hoang DQ, Pham TL, Nguyen TH, An H, Kim J, Polym. Compos., 39, 961 (2018)
- Matko S, Toldy A, Keszei S, Anna P, Bertalan G, Marosi G, Polym. Degrad. Stabil., 88, 138 (2005)
- Chen G, Wood Fiber Sci., 41, 105 (2009)
- Gaan S, Sun G, Polym. Degrad. Stabil., 92, 968 (2007)
- Suardana NPG, Ku MS, Lim JK, Mater. Des., 32, 1990 (2011)
- Branca C, Blasi CD, J. Anal. Appl. Pyrolysis, 91, 97 (2011)
- Liodakis S, Fetsis IK, Agiovlasitis IP, J. Therm. Anal. Calorim., 98, 285 (2009)
- Braun U, Bahr H, Sturm H, Schartel B, Polym. Adv. Technol., 19, 680 (2008)
- Korobeinichev OP, Ilyin SB, Shvartsberg VM, Chernov AA, Combust. Flame, 118, 718 (1999)
- Siow HE, Laurendeau NA, Combust. Flame, 136(1-2), 16 (2004)
- Ramani A, Dahoe AE, Polym. Degrad. Stabil., 104, 71 (2014)
- Rabe S, Chuenban Y, Schartel B, Materials, 10, 455 (2017)
- Seefeldt H, Braun U, Wagner MH, Macromol. Chem. Phys., 213, 2370 (2012)
- Seefeldt H, Braun U, Macromol. Mater. Eng., 297, 814 (2012)