Journal of the American Chemical Society, Vol.120, No.26, 6531-6541, 1998
Alkyl- and aryl-oxygen bond activation in solution by rhodium(I), palladium(II), and nickel(II). Transition-metal-based selectivity
Reaction of [RhCl(C8H14)(2)](2) (C8H14 = cyclooctene)with 2 equiv of the aryl methyl ether phosphine 1 in C6D6 results in an unprecedented metal insertion into the strong sp(2)-sp(3) aryl-O bond. This remarkable reaction proceeds even at room temperature and occurs directly, with no intermediacy of C-H activation or insertion into the adjacent weaker ArO-CH3 bond. Two new phenoxy complexes (8 and 9), which are analogous to the product of insertion into the ArO-CH3 bond (had it taken place) were prepared and shown not to be intermediates in the Ar-OCH3 bond cleavage process. Thus, aryl-O bond activation by the nucleophilic Rh(I) is kinetically preferred over activation of the alkyl-O bond. The phenoxy Rh(I)-eta(1)-N-2 complex (8) is in equilibrium with the crystallographically characterized Rh(I)-mu-N-2-Rh(I) dimer (12). Reaction of [RhCl(C8H14)(2)](2) With 2 equiv of the aryl methyl ether phosphine 2, PPh3, and excess HSiR3 (R = OCH2CH3, CH2CH3) results also in selective metal insertion into the aryl-O bond and formation of (CH3O)SiR3. Thus, transfer of a OCH3 group from carbon to silicon was accomplished, showing that hydrosilation of an unstrained aryl-O single bond by a primary silane is possible. The selectivity of C-O bond activation is markedly dependent on the transition-metal complex and the alkyl group involved, allowing direction of the C-O bond activation process at either the aryl-O or alkyl-O bond. Thus, contrary to the reactivity of the rhodium complex, reaction of NiI2 or Pd(CF3CO2)(2) with 1 equiv of 1 in ethanol or C6D6 at elevated temperatures results in exclusive activation of the sp(3)-sp(3) ArO-CH3 bond, while reaction of the analogous aryl ethyl ether 4 and Pd(CF3CO2)(2) results in both sp(3)-sp(3) and sp(2)-sp(3) C-O bond activation. The resulting phenoxy Pd(II) complex (18) is fully characterized by X-ray analysis. Heating the latter under mild dihydrogen pressure results in hydrodeoxygenation to afford an aryl-Pd(II) complex (19).
Keywords:CARBON-CARBON BOND;BIS HYDRIDE COMPLEXES ;C-H;OXIDATIVE ADDITION;REDUCTIVE ELIMINATION;HOMOGENEOUS CATALYSIS;CHEMISTRY;CLEAVAGE;LIGAND;PLATINUM(II)