Langmuir, Vol.35, No.41, 13301-13310, 2019
Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements
Water bridge dynamics between an atomic force microscopy (AFM) tip and a flat substrate is studied by using a multibody dissipative particle dynamics (MDPD) model. First, the numerical model is validated by comparing the present results of droplet contact angles and liquid bridges with those reported in the literature. Then, the ability of MDPD to capture the meniscus shape and behavior for different operating conditions and geometric parameters is examined for both static and dynamic cases. Hence, several parametric studies and analyses of the AFM tip configuration and its operating conditions are reported. It is found that a critical capillary number of about 0.001 is calculated based on 5% change on the force measurements between the static and dynamic results. It is also demonstrated that the hysteresis behavior in the capillary force exerted on the AFM tip can be successfully predicted by using the MDPD model when the tip approaches or retracts from the substrate. Moreover, there is an excellent agreement in the results of breakup distance for different water bridge volumes between the predictions of the MDPD model and the theory. Also, the hysteresis of capillary force exerted on an AFM tip composed of multibody design is studied. The prediction on the transition of the capillary force vs distance between the AFM tip and the substrate is in good agreement with the experimental results. Therefore, we demonstrate a validated MDPD model which can successfully capture liquid bridge dynamics. This model can be used as a powerful design tool for meniscus manipulation technology, such as dip-pen nanolithography, as well as for studying dynamic, e.g., tapping mode AFM tip, interactions with a liquid bridge.