- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.166, No.15, B1520-B1527, 2019
Synthesis and Electrochemical Performances of Fe2O3-MWCNTs/Reduced Graphene Hybrid Nanostructures for Highly Sensitive Hydrazine Detection
Fe2O3 nanorods, multi-walled carbon nanotubes (MWCNTs) and reduced graphene nanosheets (rGO) have been assembled to form Fe2O3-MWCNTs/rGO hybrid nanostructures for high sensitivity detection of hydrazine. Hydrolysis reaction and annealing were firstly used to grow Fe2O3 nanorods on MWCNTs, resulting in high density Fe2O3 nanorods with a typical diameter of 300 nm and lengths in the range from 100 nm to 200 nm. The electrochemical properties of Fe2O3-MWCNTs/rGO nanostructures were then investigated and both cyclic voltammetry (CV) and amperometry showed that Fe2O3-MWCNTs/rGO hybrid nanostructures can be used for hydrazine detection, due to their high sensitivity (4.1 mu A.mu M-1.cm(-2)), short response time (3 s), low detection limit (0.048 mu M with a S/N = 3) and good linear detection range (0.3 mu M-350 mu M). Moreover, they also present high selectivity, long-term stability and reproducibility. These characteristics can be attributed to the superimposed catalytic effect and larger specific surface area of the Fe2O3-MWCNTs/rGO hybrid nanostructures, which make them promising for high-performance electrochemical sensing. (C) 2019 The Electrochemical Society.