화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.42, 16884-16893, 2019
Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework
We report the synthesis and characterization of a two-dimensional (2D) conjugated Ni(II) tetraaza[14]annulene-linked metal organic framework (NiTAA-MOF) where NiTAA is a macrocyclic MN4 (M = metal, N = nitrogen) compound. The structure of NiTAA-MOF was elucidated by Fourier-transform infrared, X-ray photoemission, and X-ray diffraction spectroscopies, in combination with density functional theory (DFT) calculations. When chemically oxidized by iodine, the insulating bulk NiTAA-MOF (sigma < 10(-10) S/cm) exhibits an electrical conductivity of 0.01 S/cm at 300 K, demonstrating the vital role of ligand oxidation in the electrical conductivity of 2D MOFs. Magnetization measurements show that iodine-doped NiTAA-MOF is paramagnetic with weak antiferromagnetic coupling due to the presence of organic radicals of oxidized ligands and high-spin Ni(II) sites of the missing-linker defects. In addition to providing further insights into the origin of the induced electrical conductivity in 2D MOFs, both pristine and iodine-doped NiTAA-MOF synthesized in this work could find potential applications in areas such as catalase mimics, catalysis, energy storage, and dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR).