Journal of Physical Chemistry B, Vol.123, No.32, 6917-6932, 2019
Surface Topography Effects of Globular Biomolecules on Hydration Water
Hydration water serves as a microscopic manifestation of structural stability and functions of biomolecules. To develop bio-nanomaterials in applications, it is important to study how the surface topography and heterogeneity of biomolecules result in their diversity of the hydration dynamics and energetics. We here performed molecular dynamics simulations combined with the steered molecular dynamics and umbrella sampling to investigate the dynamics and escape process associated with the free energy change of water molecules close to a globular biomolecule, i.e., hemoglobin (Hb) and G-quadruplex DNA (GDNA). The residence time, power of long-time tail, and dipole relaxation time were found to display drastic changes within the averaged hydration shell of 3.0-5.0 angstrom. Compared with bulk water, in the inner hydration shell, the water dipole moment displays a slower relaxation process and is more oriented toward GDNA than toward Hb, forming a hedgehog-like structure when it surrounds GDNA. In particular, a spine water structure is observed in the GDNA narrow groove. The water isotope effect not only prolongs the dynamic time scales of libration motion in the inner hydration shell and the dipole relaxation processes in the bulk but also strengthens the DNA spine water structure. The potential of the mean force profile reflects the integrity of the hydration shell structure and enables us to obtain detailed insights into the structures formed by water, such as the caged H-bond network and the edge bridge structures; it also reveals that local hydration shell free energy (LHSFE) depends on H-bond rupture processes and ranges from 0.2 to 4.2 kcal/mol. Our results demonstrate that the surface topography of a biomolecule influences the integrity of the hydration shell structure and LHSFE. Our studies are able to identify various further applications in the areas of microfluid devices and nano-dewetting on bioinspired surfaces.