Journal of Physical Chemistry A, Vol.123, No.32, 7016-7020, 2019
Revealing Suppressed Intermolecular Coupling Effects in Aggregated Organic Semiconductors by Diluting the Crystal: Model System Perfluoropentacene:Picene
In order to investigate the effects of intermolecular interactions on the optical properties of organic semiconductors, we employ mixing of the organic semiconductor perfluoropentacene (PFP; C22F14) with the wide band-gap organic semiconductor picene (PIC; C22H14). The binary mixed thin films are prepared by simultaneous coevaporation of PIC and PFP in vacuum. We determine the optical properties of the blends by differential reflectance spectroscopy (absorption) and photoluminescence (emission). PFP:PIC thin films are a rare case of mixed thin films with a known molecular packing. The formation of equimolar mixed domains with a crystal structure clearly different from that of the pure compounds is, in the case of nonequimolar blends, accompanied by pure domains of the excess compound. Due to the wide band gap of PIC, the effect of reduced intermolecular interactions between PFP molecules can be studied in detail without any direct contributions of PIC to the spectra. We find a strongly enhanced emission from PFP in the mixed thin films, which can be explained by decoupling. Real-time investigations of the absorption spectra during growth provide further insight into intermolecular coupling effects on optical properties.