화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.123, No.34, 7337-7350, 2019
Quantum Trajectory Mean-Field Method for Nonadiabatic Dynamics in Photochemistry
The mixed quantum-classical dynamical approaches have been widely used to study nonadiabatic phenomena in photochemistry and photobiology, in which the time evolutions of the electronic and nuclear subsystems are treated based on quantum and classical mechanics, respectively. The key issue is how to deal with coherence and decoherence during the propagation of the two subsystems, which has been the subject of numerous investigations for a few decades. A brief description on Ehrenfest mean-field and surface-hopping (SH) methods is first provided, and then different algorithms for treatment of quantum decoherence are reviewed in the present paper. More attentions were paid to quantum trajectory meanfield (QTMF) method under the picture of quantum measurements, which is able to overcome the overcoherence problem. Furthermore, the combined QTMF and SH algorithm is proposed in the present work, which takes advantages of the QTMF and SH methods. The potential to extend the applicability of the QTMF method was briefly discussed, such as the generalization to other type of nonadiabatic transitions, the combination with multiscale computational models, and possible improvements on its accuracy and efficiency by using machine-learning techniques.