화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 749-756, December, 2019
화력발전소 석탄비산재를 이용한 Na-X와 Na-A 제올라이트 제조 및 상업용 제올라이트와의 Cu(II) 흡착 특성 비교
Preparation of Na-X and Na-A Zeolites from Coal Fly Ash in a Thermoelectric Power Plant and Comparison of the Adsorption Characteristics for Cu(II) with a Commercial Zeolite
E-mail:
초록
본 연구에서는 화력발전소에서 채취한 석탄 비산재(coal fly ash)로부터 fusion method를 이용하여 중금속 흡착 성능이 뛰어난 Na-X과 Na-A 제올라이트를 합성하였다. 또한 이를 이용하여 Cu(II) 흡착 성능을 상업용 Na-X 및 Na-A 제올라이트와 비교하였다. 제올라이트의 최적 합성 조건을 선정하기 위해 fusion method의 주요 영향인자인 NaOH 주입비율, 숙성시간(aging time), 수열반응 시간(hydrothermal reaction time), NaAlO2 (Na-A) 주입비율의 변화에 의한 제올라이트의 특성을 고찰하였다. 그리고 XRD, CEC, BET, SEM 분석을 실시하였으며, 최적의 제올라이트 합성 조건은 NaOH 주입비율 = 1.5, 숙성시간 = 6 h, 수열반응 시간 = 6 h, NaAlO2 (Na-A) 주입 비율 = 0.5인 것으로 확인되었다. Langmuir 등온 흡착곡선의 분석결과, Cu(II)에 대한 최대 흡착 농도는 합성된 Na-X와 Na-A 제올라이트의 경우 각각 90.1와 105.26 mg/g, 상업용 Na-X와 Na-A 제올라이트의 경우 각각, 102.05와 109.89 mg/g으로 나타나 Cu(II) 흡착 성능에 있어서 합성 제올라이트와 상업용 제올라이트가 유사한 결과를 보여주었다. 따라서 본 실험의 결과들은 화력발전소 석탄비산재의 제올라이트 합성 재료로서의 활용 가능성을 나타내었다.
Na-X and Na-A zeolites that give high adsorption capacity for heavy metals in an aqueous system were synthesized from the coal fly ash obtained from a thermoelectric power plant using a fusion method. The characteristics and Cu(II) adsorption capacity of the synthetic zeolites were also compared to those of using a commercial zeolite. For the selection of optimum conditions of zeolite synthesis, the effects of major parameters in the fusion method such as a dosage ratio of NaOH, aging time, hydrothermal reaction time, and also the dosage ratio of NaAlO2 (Na-A) on the characteristics and Cu(II) adsorption capacity of the synthetic zeolites were studied. For the analysis of characteristics of the synthetic zeolites, X-ray diffraction (XRD), cation exchange capacity (CEC), Brunaue-Emmett-Teller (BET) and scanning electron microscopy (SEM) were used. The optimum conditions for the synthesis of zeolites with a high adsorption capacity for cationic heavy metals including Cu(II) were the aging time of 6 h, hydrothermal reaction time of 6 h and NaOH and NaAlO2 dosage ratio of 1.5 and 0.5 (Na-A), respectively. According to the Langmuir isotherm test, maximum Cu(II) adsorption capacities of the synthetic and commercial Na-X and Na-A zeolites were found to be 90.1, 105.26, 102.05, and 109.89 mg/g, respectively. This indicates that the adsorption capacity of synthetic zeolites was comparable to commercial ones. The results of this study also suggest that the coal fly ash can be potentially used as a raw material for the zeolite synthesis.
  1. Maeng JH, TYK, Seo DH, Minimizing environmental impact in accordance with the thermal power plant ash management(I), Research Report 2014-02-01, Korea Environment Institute (KEI) (2014).
  2. Sun X, Li X, Zhao X, Zhu B, Zhang G, Procedia Environmental Sciences, 31, 535 (2016)
  3. Jones KB, Ruppert LF, Swanson SM, Int. J. Coal Geol., 94, 337 (2012)
  4. Holler H, Wirsching U, Fortschritte der Mineralogie, 63(1), 21-43 (1985).
  5. Koshy N, Singh DN, Journal of Environmental Chemical Engineering, 4(2), 1460-1472 (2016).
  6. Breck DW, Zeolite Molecular Sieves, John Wiley & Sons, New York, USA (1974).
  7. Hollman GG, Steenbruggen G, Janssen-Jurkovicova M, Fuel, 78(10), 1225 (1999)
  8. Franus W, Wdowin M, Franus M, Environmental Monitoring and Assessment, 186(9), 5721-5729 (2014).
  9. Petrus R, Warchoł JK, Water Research, 39(5), 819 (2005)
  10. Nascimento M, Soares PSM, de Souza VP, Fuel, 88(9), 1714 (2009)
  11. Shigemoto N, Hayashi H, Miyaura KJJOMS, J. Mater. Sci., 28, 4781 (1993)
  12. Ojumu TV, Du Plessis PW, Petrik LF, Ultrason. Sonochem., 31, 342 (2016)
  13. Brassell JP, Ojumu TV, Petrik LF, Upscaling of Zeolite Synthesis from Coal Fly Ash Waste: Current Status and Future Outlook, Intech Open, DOI:10.5772/63792 (2016).
  14. Izidoro JD, Fungaro DA, Abbott JE, Wang SB, Fuel, 103, 827 (2013)
  15. Wang C, Li J, Sun X, Wang L, Sun X, J. Environmental Sciences, 21(1), 127 (2009)
  16. Chang HL, Shih WH, Ind. Eng. Chem. Res., 39(11), 4185 (2000)
  17. Shaoyong Y, Ting’an Z, Chu C, Xianqi Z, Junmin S, Guozhi L, Huibin Y, Light Metals 2015, 121-126, Springer International Publishing: Cham (2016).
  18. Ojha K, Pradhan NC, Samanta ANJBOMS, Bull. Mat. Sci., 27, 555 (2004)
  19. Yao ZT, Xia MS, Ye Y, Zhang L, J. Hazard. Mater., 170(2-3), 639 (2009)
  20. Wang C, Li J, Wang L, Sun X, Huang J, Chinese J. Chem. Eng., 17(3), 513 (2009)
  21. Molina A, Poole C, Miner. Eng., 17(2), 167 (2004)
  22. van Reeuwijk LP, Procedures for Soil Analysis, (1993).
  23. Xie J, Wang Z, Wu DY, Zhang ZJ, Kong HN, Ind. Eng. Chem. Res., 52(42), 14890 (2013)
  24. Sutarno S, Arryyanto Y, Bull. Chem. Reaction Eng. Catalysis, 2, 41 (2007)
  25. Bai SX, Zhoi LM, Chang ZB, Zhang C, Chu M, Carbon Resources Conversion, 1(3), 245 (2018)
  26. Qiu W, Zheng Y, Chem. Eng. J., 145(3), 483 (2009)
  27. Giannetto G, Montes A, Rodriguez GJC, Zeolitas: Caracteristicas, Propiedades y Aplicaciones Industriales, Venezuela (1990).
  28. Bieseki L, Penha FG, Pergher SBC, J. Mater. Res., 16, 38 (2013)
  29. Muriithi GN, Petrik LF, Doucet FJ, J. CO2 Utilization, 36, 220 (2020)
  30. Zou Z, Shi Z, Deng L, RSC Advances, 7(9), 5195 (2017)
  31. Wang XS, Zhu L, Lu HJ, Desalination, 276(1-3), 154 (2011)
  32. Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK, J. Hazard. Mater., 173(1-3), 661 (2010)
  33. Hui KS, Chao CYH, Kot SC, J. Hazard. Mater., 127(1-3), 89 (2005)
  34. Lee MG, Yi G, Ahn BJ, Roddick F, Korean J. Chem. Eng., 17(3), 325 (2000)
  35. Wang SB, Soudi M, Li L, Zhu ZH, J. Hazard. Mater., 133(1-3), 243 (2006)
  36. Apiratikul R, Pavasant P, Chem. Eng. J., 144(2), 245 (2008)