International Journal of Hydrogen Energy, Vol.44, No.49, 26848-26862, 2019
Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide
Increasing the separation efficiency and transfer rate of photogenerated charges is the dominant factor for improving photocatalytic activity. Herein, we successfully prepared semi-crystalline WP (SC-WP) with good optical properties and as a cocatalyst to modify CdS nanorods (CdS NRs) to construct SC-WP/CdS (PD) composite catalyst by simple electrostatic self-assembly method for photocatalytic hydrogen evolution. Two high-efficiency and stable photocatalytic hydrogen evolution systems were constructed with 1.0 M ammonium sulfite solution and 10 vol% lactic acid solution as sacrificial agents, respectively. Surprisingly, the maximum photocatalytic H-2 production rate of 15446.21 mu mol h(-1) g(-1) is obtained over 10PD composite, which is 10.58 times greater than that of pure CdS. The improved photocatalytic activity can be attributed to the fact that the SC-WP nanoparticles provides a large number of exposed active sites on the surface of CdS for hydrogen evolution reaction, which can efficiently capture photogenerated electrons from CdS nanorods and promotes the transport and separation of light-induced charges. And the introduction of SC-WP nanoparticles with excellent optical properties can efficiently improve the visible light absorption range and the utilization rate of the absorbed light of the PD composite. In addition, the SC-WP nanoparticles show semi-crystalline state, which is also conducive to enhancing the photocatalytic activity. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.