화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.64, No.10, 4252-4259, 2019
Comprehending Complexity: Data-Rate Constrain in Large-Scale Networks
This paper is concerned with the rate at which a discrete-time, deterministic, and possibly large network of nonlinear systems generates information, and so with the minimum rate of data transfer under which the addressee can maintain the level of awareness about the current state of the network. While being aimed at development of tractable techniques for estimation of this rate, this paper advocates benefits from directly treating the dynamical system as a set of interacting subsystems. To this end, a novel estimation method is elaborated that is alike in flavor to the small gain theorem on input-to-output stability. The utility of this approach is demonstrated by rigorously justifying an experimentally discovered phenomenon. The topological entropy of nonlinear time-delay systems stays bounded as the delay grows without limits. This is extended on the studied observability rates and appended by constructive upper bounds independent of the delay. It is shown that these bounds are asymptotically tight for a time-delay analog of the bouncing ball dynamics.