화학공학소재연구정보센터
Combustion and Flame, Vol.210, 467-478, 2019
Hot surface ignition dynamics in premixed hydrogen-air near the lean flammability limit
The dynamics of ignition of premixed hydrogen-air from a hot glow plug were investigated in a combined experimental and numerical study. Surface temperatures during heating and at ignition were obtained from 2-color pyrometry, gas temperatures were measured by high-speed Mach-Zehnder interferometry, and far-field effects were captured by high-speed schlieren imaging. Numerical simulations considered detailed chemical kinetics and differential diffusion effects. In addition to the known cyclic (puffing) combustion phenomenon, singular ignition events (single puff) were observed near the lean flammability limit. Detailed analysis of the results of our numerical simulations reveal the existence of multiple combustion transients within the thermal boundary layer following the initial ignition event and, at late times, sustained chemical reaction within a thermal plume above the glow plug. The results have significant implications for ignition from hot surfaces within near-flammability limit mixtures, at the edge of plumes resulting from accidental release of hydrogen, or within the containments of nuclear power plants during severe accidents. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.