- Previous Article
- Next Article
- Table of Contents
Biotechnology and Bioengineering, Vol.116, No.9, 2412-2417, 2019
Enhanced production of 2'-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli
2 '-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has been spotlighted for its neutraceutical and pharmaceutical potentials. Microbial production of 2-FL is promising since it is efficient as compared to other production methods. In 2-FL microbial production via the salvage pathway for biosynthesis of guanosine 5 '-diphosphate (GDP)-l-fucose from fucose, the conversion yield from fucose is important because of the high price of fucose. In this study, deletion of the genes (araA and rhaA) coding for arabinose isomerase (AraA) and rhamnose isomerase (RhaA) was attempted in engineered Escherichia coli for improving 2-FL production by using fucose, lactose, and glycerol. The engineered E. coli constructed previously is able to express fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the alpha-1,2-fucosyltransferase (FucT2) from Helicobacter pylori and deficient in beta-galactosidase (LacZ), fucose isomerase (FucI), and fuculose kinase (FucK). The additional double-deletion of the araA and rhaA genes in the engineered E. coli enhanced the product yield of 2-FL to 0.52 mole 2-FL/mole fucose, and hence the concentration of 2-FL reached to 47.0 g/L, which are 44% and two-fold higher than those (23.1 g/L and 0.36 mole 2-FL/mole fucose) of the control strain in fed-batch fermentation. Elimination of sugar isomerases exhibiting promiscuous activities with fucose might be critical in the microbial production of 2-FL through the salvage pathway of GDP-l-fucose.
Keywords:2 '-fucosyllactose;arabinose isomerase;engineered Escherichia coli;rhamnose isomerase;salvage pathway of GDP-l-fucose