화학공학소재연구정보센터
Applied Surface Science, Vol.494, 1127-1137, 2019
TiO2 nanotree films for the production of green H-2 by solar water splitting: From microstructural and optical characteristics to the photocatalytic properties
Green H-2 production by solar water splitting relies entirely on the intrinsic properties of the photocatalyst. In this study the impact of these intrinsic properties on the photocatalytic activity of anatase TiO2, the quintessential component of state of the art photocatalytic systems was explored at the nanoscale. The exploration involved a holistic microstructural and optical characterization of fully crystallized anatase thin films synthetized by metalorganic chemical vapor deposition. A combination of electron microscopy, spectroscopic ellipsometry, and infrared spectroscopy revealed that when the deposition temperature increased, the morphology evolved from dense to porous and columnar nanostructures. Interestingly, the columns with a complex, tree-like nanostructure photogenerated 18 times more H-2 than the densest sample. This result shows that the beneficial effect of the morphological nano-complexification and crystallographic diversification of the exchange facets on the photocatalytic performance outweighs the detrimental aspects inherent to this evolution, namely the drop of the charge carrier transport and the increase of residual stress.