화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.103, No.20, 8485-8496, 2019
Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control
Double-stranded RNA (dsRNA) inducing RNA interference (RNAi) is expected to be applicable to management of agricultural pests. In this study, we selected a ladybird beetle, Henosepilachna vigintioctopunctata, as a model target pest that devours vegetable leaves, and examined the effects of feeding the pest sterilized microbes highly accumulating a target dsRNA for RNAi induction. We constructed an efficient production system for diap1*-dsRNA, which suppresses expression of the essential gene diap1 (encoding death-associated inhibitor of apoptosis protein 1) in H. vigintioctopunctata, using an industrial strain of Corynebacterium glutamicum as the host microbe. The diap1*-dsRNA was overproduced in C. glutamicum by convergent transcription using a strong promoter derived from corynephage BFK20, and the amount of dsRNA accumulated in fermented cells reached about 75 mg per liter of culture. In addition, we developed a convenient method for stabilizing the dsRNA within the microbes by simply sterilizing the diap1*-dsRNA-expressing C. glutamicum cells with ethanol. When the sterilized microbes containing diap1*-dsRNA were fed to larvae of H. vigintioctopunctata, diap1 expression in the pest was suppressed, and the leaf-feeding activity of the larvae declined. These results suggest that this system is capable of producing stabilized dsRNA for RNAi at low cost, and it will open a way to practical application of dsRNA as an environmentally-friendly agricultural insecticide.