Journal of Industrial and Engineering Chemistry, Vol.81, 93-98, January, 2020
Synthesis of renewable monomer 2, 5-bishydroxymethylfuran from highly concentrated 5-hydroxymethylfurfural in deep eutectic solvents
E-mail:,
2, 5-Bishydroxymethylfuran (BHMF) has been currently emerged as a promising biomass-derived monomer. It is highly desirable to proceed a chemical process at a high substrate concentration, by which a facile and cost-effective separation of products can be expected. Herein, we report for the first time on the hydrogenation of highly concentrated 5-hydroxymethylfurfural (HMF) in deep eutectic solvents (DESs), giving a near quantitative selectivity towards BHMF in ChCl-glycerol DES at 25 °C in 3 h using NaBH4 as the H-donor. DES is hailed as a new class of green solvent, in which HMF/BHMF could be stabilized by the strong hydrogen-bond interaction, and allowed the selective hydrogenation of HMF at high concentration up to 40 wt%. Notably, the resulting BHMF could be facilely separated by extraction with ethyl acetate, and then high purity of BHMF with a desirable isolated yield around 80% was obtained after removing of ethyl acetate. Additionally, the reaction efficiency of HMF hydrogenation in DESs was verified to be strongly associated with the viscosity of DESs and the pKa value of hydrogen-bonding donor.
Keywords:Biomass;5-Hydroxymethylfurfural;2;5-Bishydroxymethylfuran;Deep eutectic solvents;Hydrogen-bonding interaction
- Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411 (2007)
- Pang Z, Dong C, Pan X, Cellulose, 23, 323 (2016)
- Li C, Cai H, Zhang B, Li W, Pei G, Dai T, Wang A, Zhang T, Chin. J. Catal., 36, 1638 (2015)
- Agarwal B, Kailasam K, Sangwan RS, Elumalai S, Renew. Sust. Energ. Rev., 82, 2408 (2018)
- Perez GP, Mukherjee A, Dumont MJ, J. Ind. Eng. Chem., 70, 1 (2019)
- Li XLH, Yang T, ChemSusChem, 10, 1761 (2010)
- Hao W, Li W, Tang X, Zeng X, Sun Y, Liu S, Lin L, Green Chem., 18, 1080 (2016)
- Balakrishnan M, Sacia ER, Bell AT, Green Chem., 14, 1626 (2012)
- Wang F, Yuan Z, Liu B, Chen S, Zhang Z, J. Ind. Eng. Chem., 38, 181 (2016)
- Tang X, Wei J, Ding N, Sun Y, Zeng X, Hu L, Liu S, Lei T, Lin L, Renew. Sust. Energ. Rev., 77, 287 (2017)
- Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y, ACS Catal., 8, 2959 (2018)
- Cao Q, Liang WY, Guan J, Wang L, Qu Q, Zhang XZ, Wang XC, Mu XD, Appl. Catal. A: Gen., 481, 49 (2014)
- Chatterjee M, Ishizaka T, Kawanami H, Green Chem., 16, 4734 (2014)
- Kang ES, Chae DW, Kim B, Kim YG, J. Ind. Eng. Chem., 18(1), 174 (2012)
- Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MTM, ACS Catal., 6, 6704 (2016)
- Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N, Macromolecules, 46(5), 1794 (2013)
- Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
- Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B, Green Chem., 11, 1948 (2009)
- Tang X, Zuo M, Li Z, Liu H, Xiong C, Zeng X, Sun Y, Hu L, Liu S, Lei T, Lin L, ChemSusChem, 10, 2696 (2017)
- Smith EL, Abbott AP, Ryder KS, Chem. Rev., 114(21), 11060 (2014)
- Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 99, 1 (2017)
- Le K, Zuo M, Song XQ, Zeng XH, Tang X, Sun Y, Lei TZ, Lin L, J. Chem. Technol. Biotechnol., 92(12), 2929 (2017)
- Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 112, 18 (2018)
- Liu F, Audemar M, Vigier KDO, Cartigny D, Clacens JM, Gomes MFC, Padua AAH, De Campo F, Jerome F, Green Chem., 15, 3205 (2013)
- Li C, Li D, Zou S, Li Z, Yin J, Wang A, Cui Y, Yao Z, Zhao Q, Green Chem., 15, 2793 (2013)
- Aellig C, Jenny F, Scholz D, Wolf P, Giovinazzo I, Kollhoff F, Hermans I, Catal. Sci. Technol., 4, 2326 (2014)
- Cottier L, Descotes G, Soro Y, Synth. Commun., 33, 4285 (2003)
- Goswami S, Dey S, Jana S, Tetrahedron, 64, 6358 (2008)
- Francisco M, van den Bruinhorst A, Kroon MC, Angew. Chem.-Int. Edit., 52, 3074 (2013)
- Hu L, Sun Y, Lin L, Ind. Eng. Chem. Res., 51(3), 1099 (2012)
- Sho LAC, Takahashi, J. Org. Chem., 35, 1505 (1970)