Journal of Industrial and Engineering Chemistry, Vol.81, 81-87, January, 2020
Repeated geometrical T-junction breakup microfluidic filter device by injection of premixed emulsion for microdroplet production
E-mail:
In this study, we propose a repeated geometrical T-junction breakup microfluidic
filter device for fabricating microspheres from premixed emulsions. The proposed microfluidic
filter device is composed of multiple repeated T shapes in the microchannel for droplet splitting. Microdroplets are guided along the microchannel and divided symmetrically at the T-junction in the microchannel. The results obtained herein show that as the number of filters was increased, the droplet diameter decreased and the droplet size distribution improved significantly. The behaviors of the microdroplets in the microchannel were inspected as a function of the viscosity of the premixed emulsion solution. The microdroplet diameter increased significantly as the emulsion viscosity increased. Furthermore, the microfluidic filter device was tested by using it to prepare chitosan microspheres. Chitosan microspheres of a narrow size distribution with coefficient value of 6.2% were prepared successfully.
Keywords:Microdroplets;Microparticles;Single emulsion;Microfluidics;Droplet splitting;High throughput
- Daniele MA, Boyd DA, Adams AA, Ligler FS, Adv. Healthcare Mater., 4(1), 11 (2015)
- Seo M, Gorelikov I, Williams R, Matsuura N, Langmuir, 26(17), 13855 (2010)
- Sia SK, Whitesides GM, Electrophoresis, 24(21), 3563 (2003)
- Srinivasan V, Pamula VK, Fair RB, Lab Chip, 4(4), 310 (2004)
- Teh SY, Lin R, Hung LH, Lee AP, Lab Chip, 8(2), 198 (2008)
- Guo MT, Rotem A, Heyman JA, Weitz DA, Lab Chip, 12(12), 2146 (2012)
- Solvas XCI, Chem. Commun., 47(7), 1936 (2011)
- Kim HG, Kim KM, Kim YH, Lee SH, Kim GM, J. Biobased Mater. Bioenergy, 7(1), 108 (2013)
- Deveza L, Ashoken J, Castaneda G, Tong X, Keeney M, Han LH, Yang F, ACS Biomater. Sci. Eng., 1(3), 157 (2015)
- Kim CM, Ullah A, Kim KG, Kim SY, Kim GM, J. Nanosci. Nanotechnol., 16(11), 12003 (2016)
- Fujii T, Microelectron. Eng., 61, 907 (2002)
- Shi XT, Chen S, Zhou JH, Yu HJ, Li L, Wu HK, Adv. Funct. Mater., 22(18), 3799 (2012)
- Kim CM, Park SJ, Kim GM, Int. J. Precis. Eng. Manuf., 16(12), 2545 (2015)
- Link DR, Anna SL, Weitz DA, Stone HA, Phys. Rev. Lett., 92(5), 054503 (2004)
- Shen Q, Zhang C, Tahir MF, Jiang S, Zhu C, Ma Y, Fu T, Chem. Eng. Process. Process Intensif., 132, 148 (2018)
- Abate AR, Weitz DA, Lab Chip, 11(11), 1911 (2011)
- Huang KS, Lai TH, Lin YC, Lab Chip, 6(7), 954 (2006)
- Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM, Angew. Chem.-Int. Edit., 44(5), 724 (2005)
- Prasad N, Perumal J, Choi CH, Lee CS, Kim DP, Adv. Funct. Mater., 19(10), 1656 (2009)
- Amstad E, Datta SS, Weitz DA, Lab Chip, 14(4), 705 (2014)
- Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, van Steijn V, J. Fluid Mech., 717 R4(2013).
- Shang LR, Cheng Y, Zhao YJ, Chem. Rev., 117(12), 7964 (2017)
- Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y, Sci. Adv., 4(6), eaat28 (2018)