화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.10, 592-602, October, 2019
Reduction Behavior of Self-Reducing Pellets of Chromite and Si Sludge with and without Carbon
E-mail:
Feasibility is investigated for reduction of chromium ore by Si sludge with mixed silicothermic and carbothermic reaction. The reduction behavior of chromium ore using Si sludge is investigated precisely to determine the effects of carbon addition, reaction time, and reaction temperature. The pellets are dropped into the furnace after temperature stabilized. As the amount of C addition increases, the amounts of CO and CO2 gas generation increase. After the dropping of the pellets, the pellets are heated and the reaction starts at about 1,573 K or higher. The pellets maintain their shape until 10 min after the drop, and then melted. As the holding time increased, the size of the reduced metal particles increased. The chromium ore is rapidly reduced by the Si sludge, and the slag penetrated into the chromium ore and reduction progressed inside. As the reduction temperature increased, the reaction initiation time is shortened and the reaction fraction of the reduction reaction increased. As the reaction temperature increased, agglomeration of reduced ferrochrome metal is promoted.
  1. Goetzberger A, Hebling C, Schock HW, Mater. Sci. Eng., 40, 1 (2003)
  2. Sarti D, Einhaus R, Sol. Energy Mater. Sol. Cells, 72(1-4), 27 (2002)
  3. Surek T, J. Cryst. Growth, 275(1-2), 292 (2005)
  4. Green MA, Emery K, King DL, Hisikawa Y, Warta W, Prog. Photovoltaics Res. Appl., 14, 45 (2006)
  5. The First Step to Technology Valuation, Wafer, The Ministry of Trade, Industry and Energy of Korea, (2008).
  6. The Export-Import Bank of Korea, Overseas Economic Research Institute, Global Renewable Energy Market Prospects. Retrieved 2016 from http://choonsik.blogspot.kr/2014/09/blog-post82.html.
  7. Wang TY, Lin YC, Tai CY, Sivakumar R, Rai DK, Lan CW, J. Cryst. Growth, 310(15), 3403 (2008)
  8. NPD Solarbuzz. Retrieved 2016 from http://solarpower worldonline.com/2014/02/global-demand-polysiliconsurge-25-percent-2014/.
  9. Prud’homme E, Joussein E, Rossignol S, Eur. Phys. J. Special Topics, 224, 1725 (2015)
  10. Liu Y, Kong J, Zhuang Y, Xing P, J. Clean Prod., 224, 709 (2019)
  11. Wang TY, Lin YC, Fei CC, Tseng MY, Lan CW, Prog. Photovoltaics Res. Appl., 17, 155 (2009)
  12. Lin YC, Wang TY, Lan CW, Tai CY, Powder Technol., 200(3), 216 (2010)
  13. Kim JY, Kim US, Hwang KT, Cho WS, Kim KJ, J. Korean Ceram. Soc., 48, 189 (2011)
  14. Lin YC, Tai CY, Sep. Purif. Technol., 74(2), 170 (2010)
  15. Uslu E, Eric RH, J. S. Afr. Inst. Min. Metall., 91, 397 (1991)
  16. Kekkonen M, Xiao Y, Holappa L, in Proceedings of INFACON 7 (Trondheim, Norway, June 11-14, 1995). The Norwegian Ferroalloy Research Organization (FFF)) p.351.
  17. Kapure G, Tathavadkar V, Rao CB, Rao SM, Raju KS, in Proceedings of The Twelfth International Ferroalloys Congress, Sustainable Future (Helsinki, June 6-9, 2010). p.293.
  18. Wang Y, Wang L, Yu J, Chou KC, J. Min. Metall. Sect. B-Metall., 50B, 15 (2014)
  19. Atasoy A, Sale FR, Solid State Phenom., 147-149, 752 (2009)
  20. Chakraborty D, Ranganathan S, Sinha SN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 36B, 437 (2005)
  21. Weber P, Eric RH, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 24B, 987 (1993)
  22. Nafziger RH, Tress JE, Paige JI, Metall. Trans. B, 10B, 5 (1979)
  23. Soykan O, Eric R, King R, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 22B, 53 (1991)
  24. Weitz H, Garbers-Craig AM, Miner. Process. Extractive Metall. Rev., 37, 168 (2016)
  25. Han PW, Chen PX, Chu SJ, Liu LB, Chen R, in Proceedings of The Fourteenth International Ferroalloys Congress INFACON XIV (Kiev, Ukraine, May 31-June 4, 2015). p.422.
  26. Kim JH, Jung EJ, Lee GG, Jung WG, Yu SJ, Chang YC, Korean J. Mater. Res., 27(5), 263 (2017)
  27. Jung WG, Back GS, Johra FT, Kim JH, Chang YC, Yoo SJ, J. Min. Metall. Sect. B., 54B, 29 (2018)
  28. Jung WG, Hossain ST, Johra FT, Kim JH, Chang YC, J. Iron Steel Res. Int., 26, 806 (2019)
  29. JCPDS-International Centre for Diffraction Data, Card No. 22-1107, ICDD, Newton Square, PA, USA (1996).
  30. FactSage 7.0, http://www.factsage.com. Center for Research in Computational Thermochemistry, Montreal, Canada (2015).
  31. Zambrano AP, Takano C, Mourao MB, Tagusagawa YS, Iguchi Y, ISIJ Int., 51, 1296 (2011)
  32. Zambrano AP, Takano C, Nogueira AEA, Mourao MB, Tagusagawa SY, IJRRAS, 13, 330 (2012)
  33. Ding YL, Warner NA, Ironmaking Steelmaking, 24, 224 (1997)
  34. Harar-Yoruc AB, Miner. Metall. Process., 24, 115 (2007)
  35. Kapure GU, Rao CB, Tathavadkar VD, Sen R, Ironmaking Steelmaking, 38, 590 (2011)
  36. Pan J, Yang C, Zhu D, ISIJ Int., 55, 727 (2015)