화학공학소재연구정보센터
Clean Technology, Vol.25, No.3, 198-205, September, 2019
야자계 입상 활성탄에 의한 brilliant green의 흡착 특성: 평형, 동력학 및 열역학 파라미터에 관한 연구
Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies
E-mail:
초록
야자계 입상활성탄에 대한 Brilliant Green의 흡착 평형과 동역학 및 열역학 파라미터들을 다양한 초기농도(300 ~ 500 mg L-1), 접촉시간(1 ~ 12 h) 및 흡착온도(303 ~ 323 K)를 변수로 하여 회분식 실험을 통하여 연구하였다. 흡착평형 값들은 Langmuir, Freundlich, Temkin, Harkins-Jura 및 Elovich 식으로 해석하였다. 그 결과는 Langmuir 식에 가장 잘 맞았으며, 평가된 Langmuir 무차원 분리계수 값(RL = 0.018 ~ 0.040)과 Freundlich 상수값(1/n = 0.176 ~ 0.206)은 활성탄에 의한 Brilliant Green의 흡착이 효과적인 공정임을 보여주었다. Temkin 식에 의해 평가된 흡착열 관련상수(B = 12.43 ~ 17.15 J mol-1)는 물리흡착에 해당하였다. Harkins-Jura 식에 의한 등온선 매개변수(AHJ)는 온도가 증가할수록 이종 기공 분포도 증가함을 나타내었고, Elovich 식에 의한 최대흡착용량은 실험값보다 매우 적은 것으로 나타났다. 흡착공정은 유사이차반응속도식에 더 잘 맞았으며, 흡착과정은 입자내 확산이 율속단계였다. 입자내 확산속도 상수는 초기 농도가 커질수록 염료의 운동이 활발 해졌기 때문에 증가하였다. 그리고 초기농도가 커질수록 경계층의 영향이 커졌다. Gibbs 자유에너지(-3.46 ~ -11.35 kJmol-1), 엔탈피(18.63 kJ mol-1) 및 활성화에너지(26.28 kJ mol-1)는 흡착공정이 자발적이고, 흡열 및 물리흡착임을 나타냈다.
The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations (300 ~ 500 mg L-1), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor (RL = 0.018 ~ 0.040) and Freundlich constant (n-1 = 0.176 ~ 0.206) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants (B = 12.43 ~ 17.15 J mol-1) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter (AHJ) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy (-10.3 ~ -11.4 kJ mol-1), positive enthalpy change (18.63 kJ mol-1), and activation energy (26.28 kJ mol-1) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.
  1. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S, Bioresour. Technol., 87(1), 129 (2003)
  2. Gupta VK, Ali I, Environ. Sci. Technol., 42, 766 (2008)
  3. Mane VS, Mall ID, Shrivastava VC, J. Environ. Manage., 84, 390 (2007)
  4. LabChem Inc., “Brilliant Green Safety Data Sheet,” (2017).
  5. Mittal A, Kaur D, Mittal J, J. Colloid Interface Sci., 326(1), 8 (2008)
  6. Nandi BK, Goswami A, Purkait MK, J. Hazard. Mater., 161(1), 387 (2009)
  7. Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalin., 281, 226 (2011)
  8. Rehman MSU, Munir M, Ashfaq M, Rashid N, Nazar MF, Danish M, Han JI, Chem. Eng. J., 228, 54 (2013)
  9. Salem MA, Elsharkawy RG, Hablas MF, Eur. Polym. J., 75, 577 (2016)
  10. Wikipedia, “Brilliant Green Dye”, https://en.wikipedia.org.(accessed Jun. 2019).
  11. Nandi BK, Goswami A, Purkait MK, J. Hazard. Mater., 161(1), 387 (2009)
  12. Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
  13. Sivakumar P, Palanisamy PN, Int. J. Chem. Technol. Res., 1, 502 (2009)
  14. Shanavas S, Kunju AS, Varghese HT, Panicker CY, Oriental J. Chem., 27, 245 (2011)
  15. Hamdaoui O, Naffrechoux E, J. Hazard. Mater., 147(1-2), 381 (2007)
  16. Lee JJ, Appl. Chem. Eng., 30(2), 190 (2019)
  17. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
  18. Nethaji S, Sivasamy A, Thennarasu G, Saravanan S, J. Hazard. Mater., 181(1-3), 271 (2010)
  19. Onal Y, BaSar CA, Eren D, Onalzdemir CS, Depci T, J. Hazard. Mater., B128, 150 (2006)
  20. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W, Chemosphere, 53, 655 (2003)
  21. Bayramoglu G, Arica MY, Korean J. Chem. Eng., 35(6), 1303 (2018)
  22. Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)