Journal of Industrial and Engineering Chemistry, Vol.79, 314-325, November, 2019
Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation
E-mail:
Bimetallic nanostructures have gained immense importance owing to their enhanced co-catalytic
effect in improving photocatalytic activity of TiO2 for various applications relative to monometallic
ones. However, the use of bimetallic core@shell catalyst/nanocatalyst for hydrogenation of
important industrial organic is not much explored relative to conventional metal catalysts. In
this respect, the present study demonstrated the synthesis of core@shell (Cu@Zn) nanostructure
based on their galvanic interactions. TEM analysis confirmed the formation of Cu@Zn nanoparticles with a shell thickness of 195 nm. It was observed that with increasing Cu:Zn weight ratio (1:1, 2:1, and 3:1) the average hydrodynamic size increases from 198 to 267 nm. These Cu@Zn nanostructures showed superior co-catalytic activity after impregnation on (001) faceted titanium nanosheets (surface area = 72.8 m2 g-1) for the selective hydrogenation of quinoline under visible light radiations. The optimized Cu@Zn(3:1)/TiO2 photocatalyst showed enhanced conversion, selectivity, and higher rate constant (k = 2.1 x 10-1 h-1) compared to Cu and Zn-TiO2 nanocomposites. The superior activity of Cu@Zn-TiO2 photocatalyst was attributed to the synergistic interaction occurring at bimetallic-TiO2 interface which effectively promotes the transfer of electron and hydride (H-) for quinoline hydrogenation. The conventional hydrogenation of quinoline required high temperature, solvents, expensive bases and involved multistep procedure. Therefore, the use of Cu@Zn-TiO2 photocatalyst might be a greener approach for the selective hydrogenation of industrial important unsaturated organic compounds under light radiations.
Keywords:Cu@Zn nanostructure;Co-catalytic activity;Cu@Zn/TiO2 co-catalysis;Quinoline hydrogenation;Visible light photocatalysis
- Shim K, Lee WC, Park MS, Shahabuddin M, Yamauchi Y, Hossain MSA, Shim YB, Kim JH, Sens. Actuators B-Chem., 278, 88 (2019)
- Thanh TD, Chuong ND, Hien HV, Kim NH, Lee JH, ACS Appl. Mater. Interfaces, 10, 4672 (2018)
- Xu H, Song P, Wang J, Shiraishi Y, Du Y, Liu Q, ACS Sustain. Chem. Eng., 6, 7159 (2018)
- Li B, Liu JY, Liu Q, Chen RR, Zhang HS, Yu J, Song DL, Li JQ, Zhang ML, Wang J, Appl. Surf. Sci., 475, 700 (2019)
- Roy N, Suzuki N, Nakabayashi Y, Hirano Y, Ikari H, Katsumata K, Nakata K, Fujishima A, Terashima C, ChemElectroChem, 5, 2542 (2018)
- Dong WH, Ren YP, Bai ZX, Jiao J, Chen Y, Han BK, Chen Q, J. Colloid Interface Sci., 512, 812 (2018)
- Bathla A, Pal B, J. Ind. Eng. Chem., 67, 486 (2018)
- Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y, ACS Nano, 4, 6725 (2010)
- Weng WL, Hsu CY, Lee JS, Fan HH, Liao CN, Nanoscale, 10, 9862 (2018)
- Ma P, Gao D, Ni Y, Gao L, Plasmonics, 11, 183 (2016)
- Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A, Artif. Cells Nanomed. Biotechnol., 44, 376 (2016)
- Jin X, Mao A, Ding M, Ding P, Zhang T, Gu X, Xiao W, Yuan J, Appl. Spectrosc., 70, 1692 (2016)
- Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS, Chem. Soc. Rev., 44, 7540 (2015)
- Khatami M, Alijani H, Nejad M, Varma R, Appl. Sci., 8, 411 (2018)
- Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia YN, Chem. Rev., 116(18), 10414 (2016)
- De S, Zhang J, Luque R, Yan N, Energy Environ. Sci., 9, 3314 (2016)
- Jiang HL, Akita T, Ishida T, Haruta M, Xu Q, J. Am. Chem. Soc., 133(5), 1304 (2011)
- Xu C, Liu Y, Wang J, Geng H, Qiu H, ACS Appl. Mater. Interfaces, 3, 4626 (2011)
- Sarkar A, Manthiram A, J. Phys. Chem. C, 114, 4725 (2010)
- Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH, J. Am. Chem. Soc., 133(19), 7547 (2011)
- Sridharan V, Suryavanshi PA, Menendez JC, Chem. Rev., 111(11), 7157 (2011)
- Wang C, Li C, Wu X, Pettman A, Xiao J, Angew. Chem.-Int. Edit., 121, 6646 (2009)
- Chakraborty S, Brennessel WW, Jones WD, J. Am. Chem. Soc., 136(24), 8564 (2014)
- Chen F, Surkus AE, He L, Pohl MM, Radnik J, Topf C, Junge K, Beller M, J. Am. Chem. Soc., 137(36), 11718 (2015)
- Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S, Catal. Sci. Technol., 4, 1939 (2014)
- Wu J, Barnard JH, Zhang Y, Talwar D, Robertson CM, Xiao J, Chem. Commun., 49, 7052 (2013)
- Abarca B, Adam R, Ballesteros R, Org. Biomol. Chem., 10, 1826 (2012)
- Bathla A, Pal B, ChemistrySelect, 3, 4738 (2018)
- Li S, Yang Y, Wang Y, Liu H, Tai J, Zhang J, Han B, Catal. Sci. Technol., 8, 4314 (2018)
- Gong YT, Zhang PF, Xu X, Li Y, Li HR, Wang Y, J. Catal., 297, 272 (2013)
- Chen Y, Yu Z, Chen Z, Shen R, Wang Y, Cao X, Peng Q, Li Y, Nano Res., 9, 2632 (2016)
- Zhang S, Xia Z, Ni T, Zhang H, Wu C, Qu Y, J. Mater. Chem. A, 5, 3260 (2017)
- Sorribes I, Liu L, Domenech-Carbo A, Corma A, ACS Catal., 8, 4545 (2018)
- Monga A, Bathla A, Pal B, Sol. Energy, 155, 1403 (2017)
- Monga A, Rather RA, Pal B, Sol. Energy Mater. Sol. Cells, 172, 285 (2017)
- Chang SH, Yang PY, Lai CM, Lu SC, Li GA, Chang WC, Tuan HY, CrystEngComm, 18, 616 (2016)
- Kamimura S, Yamashita S, Abe S, Tsubota T, Ohno T, Appl. Catal. B: Environ., 211, 11 (2017)
- Lyu Z, Liu B, Wang R, Tian L, J. Mater. Res., 32, 2781 (2017)
- Ma S, Zhan S, Jia Y, Zhou Q, ACS Appl. Mater. Interfaces, 7, 21875 (2015)
- Vaiano V, Lara M, Iervolino G, Matarangolo M, Navio J, Hidalgo M, J. Photochem. Photobiol. A-Chem., 365, 52 (2018)
- Xie C, Song J, Wu H, Hu Y, Liu H, Zhang Z, Zhang P, Chen B, Han B, J. Am. Ceram. Soc., 141, 4002 (2019)
- Tong ZW, Yang D, Xiao TX, Tian Y, Jiang ZY, Chem. Eng. J., 260, 117 (2015)
- She H, Zhou H, Li L, Zhao Z, Jiang M, Huang J, Wang L, Wang Q, ACS Sustain. Chem. Eng., 7, 650 (2018)
- She H, Zhou H, Li L, Wang L, Huang J, Wang Q, ACS Sustain. Chem. Eng., 6, 11939 (2018)
- Ma Q, Peng X, Zhu M, Wang X, Wang Y, Wang H, Electrochem. Commun., 95, 228 (2018)
- Peng X, He C, Liu Q, Wang X, Wang H, Zhang Y, Ma Q, Zhang K, Han Y, Wang H, Electrochim. Acta, 222, 1112 (2016)
- He C, Peng XN, Liu QY, Fan X, Wang H, Int. J. Hydrog. Energy, 39(25), 13415 (2014)
- Wang WS, Wang DH, Qu WG, Lu LQ, Xu AW, J. Phys. Chem. C, 116, 19893 (2012)
- Rather RA, Pooja D, Kumar P, Singh S, Pal B, J. Clean Prod., 175, 394 (2018)
- Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS, J. Am. Chem. Soc., 131(9), 3152 (2009)
- Pallotti DK, Passoni L, Maddalena P, Di Fonzo F, Lettieri S, J. Phys. Chem. C, 121, 9011 (2017)
- Chen N, Deng D, Li Y, Liu X, Xing X, Xiao X, Wang Y, Sci. Rep., 7, 7692 (2017)
- Thankalekshmi RR, Rastogi A, IEEE, 1 (2015).
- Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W, ACS Appl. Mater. Interfaces, 8, 20128 (2016)
- Lee MY, Ding SJ, Wu CC, Peng J, Jiang CT, Chou CC, Sens. Actuators B-Chem., 206, 584 (2015)
- Bineesh KV, Kim DK, Park DW, Nanoscale, 2, 1222 (2010)
- Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K, Int. J. Electrochem. Sci., 7, 4871 (2012)