화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 314-325, November, 2019
Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation
E-mail:
Bimetallic nanostructures have gained immense importance owing to their enhanced co-catalytic effect in improving photocatalytic activity of TiO2 for various applications relative to monometallic ones. However, the use of bimetallic core@shell catalyst/nanocatalyst for hydrogenation of important industrial organic is not much explored relative to conventional metal catalysts. In this respect, the present study demonstrated the synthesis of core@shell (Cu@Zn) nanostructure based on their galvanic interactions. TEM analysis confirmed the formation of Cu@Zn nanoparticles with a shell thickness of 195 nm. It was observed that with increasing Cu:Zn weight ratio (1:1, 2:1, and 3:1) the average hydrodynamic size increases from 198 to 267 nm. These Cu@Zn nanostructures showed superior co-catalytic activity after impregnation on (001) faceted titanium nanosheets (surface area = 72.8 m2 g-1) for the selective hydrogenation of quinoline under visible light radiations. The optimized Cu@Zn(3:1)/TiO2 photocatalyst showed enhanced conversion, selectivity, and higher rate constant (k = 2.1 x 10-1 h-1) compared to Cu and Zn-TiO2 nanocomposites. The superior activity of Cu@Zn-TiO2 photocatalyst was attributed to the synergistic interaction occurring at bimetallic-TiO2 interface which effectively promotes the transfer of electron and hydride (H-) for quinoline hydrogenation. The conventional hydrogenation of quinoline required high temperature, solvents, expensive bases and involved multistep procedure. Therefore, the use of Cu@Zn-TiO2 photocatalyst might be a greener approach for the selective hydrogenation of industrial important unsaturated organic compounds under light radiations.
  1. Shim K, Lee WC, Park MS, Shahabuddin M, Yamauchi Y, Hossain MSA, Shim YB, Kim JH, Sens. Actuators B-Chem., 278, 88 (2019)
  2. Thanh TD, Chuong ND, Hien HV, Kim NH, Lee JH, ACS Appl. Mater. Interfaces, 10, 4672 (2018)
  3. Xu H, Song P, Wang J, Shiraishi Y, Du Y, Liu Q, ACS Sustain. Chem. Eng., 6, 7159 (2018)
  4. Li B, Liu JY, Liu Q, Chen RR, Zhang HS, Yu J, Song DL, Li JQ, Zhang ML, Wang J, Appl. Surf. Sci., 475, 700 (2019)
  5. Roy N, Suzuki N, Nakabayashi Y, Hirano Y, Ikari H, Katsumata K, Nakata K, Fujishima A, Terashima C, ChemElectroChem, 5, 2542 (2018)
  6. Dong WH, Ren YP, Bai ZX, Jiao J, Chen Y, Han BK, Chen Q, J. Colloid Interface Sci., 512, 812 (2018)
  7. Bathla A, Pal B, J. Ind. Eng. Chem., 67, 486 (2018)
  8. Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y, ACS Nano, 4, 6725 (2010)
  9. Weng WL, Hsu CY, Lee JS, Fan HH, Liao CN, Nanoscale, 10, 9862 (2018)
  10. Ma P, Gao D, Ni Y, Gao L, Plasmonics, 11, 183 (2016)
  11. Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A, Artif. Cells Nanomed. Biotechnol., 44, 376 (2016)
  12. Jin X, Mao A, Ding M, Ding P, Zhang T, Gu X, Xiao W, Yuan J, Appl. Spectrosc., 70, 1692 (2016)
  13. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS, Chem. Soc. Rev., 44, 7540 (2015)
  14. Khatami M, Alijani H, Nejad M, Varma R, Appl. Sci., 8, 411 (2018)
  15. Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia YN, Chem. Rev., 116(18), 10414 (2016)
  16. De S, Zhang J, Luque R, Yan N, Energy Environ. Sci., 9, 3314 (2016)
  17. Jiang HL, Akita T, Ishida T, Haruta M, Xu Q, J. Am. Chem. Soc., 133(5), 1304 (2011)
  18. Xu C, Liu Y, Wang J, Geng H, Qiu H, ACS Appl. Mater. Interfaces, 3, 4626 (2011)
  19. Sarkar A, Manthiram A, J. Phys. Chem. C, 114, 4725 (2010)
  20. Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH, J. Am. Chem. Soc., 133(19), 7547 (2011)
  21. Sridharan V, Suryavanshi PA, Menendez JC, Chem. Rev., 111(11), 7157 (2011)
  22. Wang C, Li C, Wu X, Pettman A, Xiao J, Angew. Chem.-Int. Edit., 121, 6646 (2009)
  23. Chakraborty S, Brennessel WW, Jones WD, J. Am. Chem. Soc., 136(24), 8564 (2014)
  24. Chen F, Surkus AE, He L, Pohl MM, Radnik J, Topf C, Junge K, Beller M, J. Am. Chem. Soc., 137(36), 11718 (2015)
  25. Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S, Catal. Sci. Technol., 4, 1939 (2014)
  26. Wu J, Barnard JH, Zhang Y, Talwar D, Robertson CM, Xiao J, Chem. Commun., 49, 7052 (2013)
  27. Abarca B, Adam R, Ballesteros R, Org. Biomol. Chem., 10, 1826 (2012)
  28. Bathla A, Pal B, ChemistrySelect, 3, 4738 (2018)
  29. Li S, Yang Y, Wang Y, Liu H, Tai J, Zhang J, Han B, Catal. Sci. Technol., 8, 4314 (2018)
  30. Gong YT, Zhang PF, Xu X, Li Y, Li HR, Wang Y, J. Catal., 297, 272 (2013)
  31. Chen Y, Yu Z, Chen Z, Shen R, Wang Y, Cao X, Peng Q, Li Y, Nano Res., 9, 2632 (2016)
  32. Zhang S, Xia Z, Ni T, Zhang H, Wu C, Qu Y, J. Mater. Chem. A, 5, 3260 (2017)
  33. Sorribes I, Liu L, Domenech-Carbo A, Corma A, ACS Catal., 8, 4545 (2018)
  34. Monga A, Bathla A, Pal B, Sol. Energy, 155, 1403 (2017)
  35. Monga A, Rather RA, Pal B, Sol. Energy Mater. Sol. Cells, 172, 285 (2017)
  36. Chang SH, Yang PY, Lai CM, Lu SC, Li GA, Chang WC, Tuan HY, CrystEngComm, 18, 616 (2016)
  37. Kamimura S, Yamashita S, Abe S, Tsubota T, Ohno T, Appl. Catal. B: Environ., 211, 11 (2017)
  38. Lyu Z, Liu B, Wang R, Tian L, J. Mater. Res., 32, 2781 (2017)
  39. Ma S, Zhan S, Jia Y, Zhou Q, ACS Appl. Mater. Interfaces, 7, 21875 (2015)
  40. Vaiano V, Lara M, Iervolino G, Matarangolo M, Navio J, Hidalgo M, J. Photochem. Photobiol. A-Chem., 365, 52 (2018)
  41. Xie C, Song J, Wu H, Hu Y, Liu H, Zhang Z, Zhang P, Chen B, Han B, J. Am. Ceram. Soc., 141, 4002 (2019)
  42. Tong ZW, Yang D, Xiao TX, Tian Y, Jiang ZY, Chem. Eng. J., 260, 117 (2015)
  43. She H, Zhou H, Li L, Zhao Z, Jiang M, Huang J, Wang L, Wang Q, ACS Sustain. Chem. Eng., 7, 650 (2018)
  44. She H, Zhou H, Li L, Wang L, Huang J, Wang Q, ACS Sustain. Chem. Eng., 6, 11939 (2018)
  45. Ma Q, Peng X, Zhu M, Wang X, Wang Y, Wang H, Electrochem. Commun., 95, 228 (2018)
  46. Peng X, He C, Liu Q, Wang X, Wang H, Zhang Y, Ma Q, Zhang K, Han Y, Wang H, Electrochim. Acta, 222, 1112 (2016)
  47. He C, Peng XN, Liu QY, Fan X, Wang H, Int. J. Hydrog. Energy, 39(25), 13415 (2014)
  48. Wang WS, Wang DH, Qu WG, Lu LQ, Xu AW, J. Phys. Chem. C, 116, 19893 (2012)
  49. Rather RA, Pooja D, Kumar P, Singh S, Pal B, J. Clean Prod., 175, 394 (2018)
  50. Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS, J. Am. Chem. Soc., 131(9), 3152 (2009)
  51. Pallotti DK, Passoni L, Maddalena P, Di Fonzo F, Lettieri S, J. Phys. Chem. C, 121, 9011 (2017)
  52. Chen N, Deng D, Li Y, Liu X, Xing X, Xiao X, Wang Y, Sci. Rep., 7, 7692 (2017)
  53. Thankalekshmi RR, Rastogi A, IEEE, 1 (2015).
  54. Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W, ACS Appl. Mater. Interfaces, 8, 20128 (2016)
  55. Lee MY, Ding SJ, Wu CC, Peng J, Jiang CT, Chou CC, Sens. Actuators B-Chem., 206, 584 (2015)
  56. Bineesh KV, Kim DK, Park DW, Nanoscale, 2, 1222 (2010)
  57. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K, Int. J. Electrochem. Sci., 7, 4871 (2012)