Korean Chemical Engineering Research, Vol.57, No.5, 701-705, October, 2019
알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매
Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions
E-mail:
초록
알칼라인 조건에서의 산소발생 반응(oxygen-evolution reaction: OER)은 다양한 에너지 시스템에 중요한 반응으로 여겨지고 있다. 큰 overpotential을 감소시키기 위해 다양한 촉매들이 개발되고 있으며, 그 중 NiO는 높은 활성도에 대한 가능성으로 인해 연구가 활발하게 진행되고 있다. 촉매의 표면에서 OER에 대한 메커니즘은 정확하게 규명되지는 않았지만, 산화물 촉매에서 Ni 또는 O vacancy와 같은 결함들은 많은 전기화학반응에서 활성점으로 여겨진다. 따라서, 본 연구에서는 nitrogen을 ethylenediamine을 이용하여 NiO의 O위치에 치환하여 Ni vacancy를 형성하고 그로 인해서 OER의 activity와 내구성에 어떠한 영향을 미치는지에 대해 분석해 보았다.
Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.
- Doyle RL, Lyons MEG, Springer International Publishing Switzerland 2016, DOI 10.1007/978-3-319-29641-8_2.
- Koper MTMJ, Electroanal. Chem., 660, 254 (2011)
- Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y, Science, 334(6061), 1383 (2011)
- Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S, Nat. Commun., 6, 8249 (2015)
- Chen CF, King G, Dickerson RM, Papin PA, Gupta S,Kellogg WR, Wu G, Nano. Energy., 13, 423 (2015)
- Risch M, Grimaud A, May KJ, Stoerzinger KA, Chen TJ, Mansour AN, Shao-Horn Y, J. Phys. Chem. C, 117, 8628 (2013)
- Bockris JOM, Otagawa TJ, Electrochem. Soc., 131, 290 (1984)
- May KJ, Carlton CE, Stoezinger KA, Risch M, Suntivich J, Lee YL, Grimaud A, Shao-Horn YJ, Phys. Chem. Lett., 3, 3264 (2012)
- Carbonio RE, Fierro C, Tryk D, Scherson D, Yeager EJ, Power Sources, 22, 387 (1988)
- Grimaud A, May KJ, Carlton CE, Lee YL, Risch M, Hong WT, Zhou J, Shao-Horn Y, Nat. Commun., 4, 2439 (2013)
- Grimaud A, Carlton CE, Risch M, Hong WT, May KJ, Shao-Horn YJ, Phys. Chem. C, 117, 25926 (2013)
- Cheng Y, Jiang SP, Progress in Natural Science: Materials International 25, 545-553(2015).
- Favaro M, Valero-Vidal C, Eichhorn J, Toma FM, Ross PN, Yano J, Liu Z, Crumlin EJ,, J. Mater. Chem. A, 5, 11634 (2017)
- Andersen NI, Serov A, Atanassov P, Appl. Catal. B: Environ., 163, 623 (2015)
- Jiang N, You B, Sheng M, Sun Y, Angew. Chem.-Int. Edit., 127, 6349 (2015)
- Chang J, Xiao Y, Xiao M, Ge J, Liu C, Xing W, ACS Catal., 5, 6874 (2015)
- Zhu Y, Zhou W, Chen ZG, Chen Y, Su C, Tade MO, Shao Z, Angew. Chem.-Int. Edit., 127, 3969 (2015)
- Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G, Nano Today, 11(5), 601 (2016)
- Cao R, Lee JS, Liu M, Cho J, Adv. Eng. Mater., 2, 816 (2012)
- Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB, Electrochem. Soc., 158, A1379 (2011)
- Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J, ChemCatChem, 3, 1159 (2011)
- Schulze A, Gulzow E, J. Power Sources, 127(1-2), 252 (2004)
- Chung HT, Won JH, Zelenay P, Nature Communications, 4, 1922 (2013)
- Jiang J, Liu Q, Zeng C, Ai L, J. Mater. Chem. A, 5, 16929 (2017)
- Liu X, Dai L, Nature Reviews Materials, 1, 16064 (2016)
- Hu JC, Zhu KK, Chen LF, Yang HJ, Li Z, Suchopar A, Richards R, Adv. Mater., 20(2), 267 (2008)
- Lin F, Gillaspie DT, Dillon AC, Richards RM, Engtrakul C, Thin Solid Films, 527, 26 (2013)
- Chawla AK, Singhal S, Gupta HO, Chandra R, Thin Solid Films, 518(5), 1430 (2009)
- Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
- Soriano L, Gutierrez A, Preda I, Palacin S, Sanz JM, Abbate M, Trigo JF, Vollmer A, Bressler PR, Phys. Rev. B, 74 (2006).