화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.5, 741-749, September, 2019
전단 유동이 적용된 서스펜션 내부의 형태별 카본 블랙에 대한 수치 연구
Numerical Study of Various Shape Aggregations of Carbon Black in Suspension with Shear Flow
E-mail:
Aggregates of carbon black with various shapes in a suspension were investigated to understand their behavior in fluid flow. At a lower aspect ratio, the particles exhibited tumbling or rotational motion, and the fluid flow was deflected in regions where the density of particles was higher. The contact between the particles promoted partial particle grouping when the aspect ratios of the particles were low. The average transitional motion of the particles was greatest at the lowest aspect ratio case. This led to weaker rearrangement event than those when the particles were nearly spherical. The elongated particles could act as bridges to promote the formation of particle groups. We believe that our study provides insight for suspensions containing particles with various shapes, which can be used to control the suspensions rheologically.
  1. Park C, Kang HJ, Polym. Korea, 37(5), 656 (2013)
  2. Cho N, Kim JH, Polym. Korea, 40(5), 818 (2016)
  3. Seo KH, Cho KS, Yun IS, Choi WH, Hur BK, Kang DG, Polym. Korea, 34(5), 430 (2010)
  4. Kim JH, Lee IJ, Noh SM, Kang CY, Nam JH, Jung HW, Park JM, Polym. Korea, 35(6), 574 (2011)
  5. Barnes HA, J. Rheol., 33, 329 (1989)
  6. Yebra DM, Weinell CE, Macromolecules, 46, 3199 (2013)
  7. Medalia AI, Richards LW, J. Colloid Interface Sci., 40, 233 (1972)
  8. Kattige A, Rowley G, Int. J. Pharm., 316, 74 (2009)
  9. Li XX, Jeong SY, Choi EJ, Cho UR, Polym. Korea, 43(2), 321 (2019)
  10. Kim MS, Cho UR, Polym. Korea, 37(6), 764 (2013)
  11. Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y, Polymer, 47(10), 3298 (2006)
  12. Sierou A, Brady JF, J. Fluid Mech., 448, 115 (2001)
  13. Safdari A, Kim KC, Comput. Math. Appl., 68, 606 (2014)
  14. Sun R, Xiao H, Sun H, Adv. Water Resour., 107, 412 (2017)
  15. Meakin P, Adv. Colloid Interface Sci., 28, 249 (1988)
  16. Leblanc JL, Prog. Polym. Sci, 27, 627 (2002)
  17. Meakin P, Donn B, Mulholland GW, Langmuir, 5, 510 (1989)
  18. Megaridis CM, Dobbins RA, Combust. Sci. Technol., 71, 95 (1990)
  19. Sutherland DN, Mulholland GW, Gentry JW, Nature, 226, 1241 (1970)
  20. Medalia AI, J. Colloid Interface Sci., 24, 393 (1967)
  21. Medalia AI, J. Colloid Interface Sci., 32, 115 (1970)
  22. Succi S, The Lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press, Oxford, UK, p 32 (2001).
  23. Peskin CS, Acta Numerica, 11, 479 (2002)
  24. Cundall PA, Strack ODL, Geotechnique, 29, 47 (1979)
  25. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, Chen G, Krishnan RS, Science, 311, 1740 (2006)
  26. Yang RY, Zou RP, Yu AB, Phys. Rev. E, 62, 3900 (2000)
  27. Vinogradova OI, Langmuir, 11(6), 2213 (1995)
  28. Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B, Phys. Chem. Chem. Phys., 15, 14476 (2013)
  29. Zhang Y, Narayanan A, Mugele F, Stuart MAC, Duits MHG, Colloids Surf. A: Physicochem. Eng. Asp., 489, 461 (2016)
  30. Jeffery GB, Proc. Royal Soc. A, 102, 161 (1922)
  31. Zong Y, Peng C, Guoc Z, Wang LP, Comput. Math. Appl., 72, 288 (2016)
  32. Zhang T, Shi B, Guo Z, Chai Z, Lu J, Phys. Rev., 85, 016701 (2012)
  33. Kruger T, Varnik F, Raabe D, Comput. Math. Appl., 61, 3485 (2011)
  34. Coussot P, Ancey C, Phys. Rev. E, 59, 4445 (1999)
  35. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Dino D, Phys. Rev. X, 2, 031017 (2012)
  36. Wagner NJ, Brady JF, Phys. Today, 67, 27 (2009)
  37. Pabst W, Gregorova E, Berthold C, J. European Ceram. Soc., 26, 149 (2006)
  38. Ginelli F, Poggi P, Turchi A, Chate H, Livi R, Politi A, Phys. Rev. Lett., 99, 130601 (2007)