화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 410-420, October, 2019
Organic Dye Solution Nanofiltration by 2D Zn-TCPP(Fe) Membrane - leverage of chemical and fluid dynamic effects
E-mail:
This study investigates organic solvent nanofiltration (OSN) using the membranes composed of 2D Zn- TCPP(Fe) nanosheets. A group of organic dyes with different molecular weights, hydrophilic properties and functional groups was selected as probe solutes in ethanol, isopropanol and ethyl acetate, respectively, to examine their OSN characteristics through the Zn-TCPP(Fe) membrane. The intermolecular interactions of organic solvent, dye and Zn-TCPP(Fe) nanosheets profoundly influence the mass transfer in the nano channels of the lamellar membrane. Representatively, the isopropanol solution of Brilliant Blue G dye turns out to have a favorable OSN performance (>90 % rejection with an average permenance of 175 L·m-2·h-1·bar-1) over 4 h, whereas replacement of isopropanol by ethanol results in incipient loss of rejection. However, for this ethanol solution feed, incorporating an optimal dose of ZIF-8 nanograins into the nanosheets via co-deposition, a particle-over-lamellae structure formed unveils a significant improvement on OSN. Such boost is attributed to a combinative effect, i.e., alleviating dye-nanosheet complexation so as to reduce disturbing the lamellar structure as well as to assist desolvation of the dye over the feed side. To comprehend how solvent-slolute-nanosheet interactions dominate OSN, besides the experimental characterizations, both visco-molar volume and Stokes-Einstein diameter that describe fluid dynamic properties of solute molecule in a solvent are employed to assist the analysis. Possessing hydrophilic characteristic, Zn-TCPP(Fe) nanosheet engages strong hydrophilic association with hydrophilic dye and solvent, leading to weak OSN performance. Fundamentally, there are mutual interactions among solvent, solute and nanosheets in this membrane system, in which the prevailed pair of them impacts OSN performance.
  1. Li JR, Sculley J, Zhou HC, Chem. Rev., 112(2), 869 (2012)
  2. Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B, Chem. Soc. Rev., 46, 7124 (2017)
  3. Morris RE, Brammer L, Chem. Soc. Rev., 46, 5444 (2017)
  4. Ji YL, Qian WJ, Yu YW, An QF, Liu LF, Zhou Y, Gao CJ, Chin. J. Chem. Eng., 25(11), 1639 (2017)
  5. Liu TY, Yuan HG, Liu YY, Ren D, Su YC, Wang X, ACS nano, 12, 9253 (2018)
  6. Kadhom M, Deng B, Appl. Mater. Today, 11, 219 (2018)
  7. Guo XY, Liu DH, Han TT, Huang HL, Yang QY, Zhong CL, AIChE J., 63(4), 1303 (2017)
  8. Sarango L, Paseta L, Navarro M, Zornoza B, Coronas J, J. Ind. Eng. Chem., 59, 8 (2018)
  9. Luo JQ, Wan YH, J. Membr. Sci., 438, 18 (2013)
  10. Marchetti P, Solomon MFJ, Szekely G, Livingston AG, Chem. Rev., 114(21), 10735 (2014)
  11. Peng Y, Li YS, Ban YJ, Jin H, Jiao WM, Liu XL, Yang WS, Science, 346(6215), 1356 (2014)
  12. Trinh DX, Tran TPN, Taniike T, Sep. Purif. Technol., 177, 249 (2107)
  13. Zhu J, Hou J, Uliana A, Zhang Y, Tiana M, Bruggen BVD, J. Mater. Chem. A, 6, 3773 (2018)
  14. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR, Science, 343(6172), 752 (2014)
  15. Huang L, Li YR, Zhou QQ, Yuan WJ, Shi GQ, Adv. Mater., 27(25), 3797 (2015)
  16. Kim SJ, Kim DW, Cho KM, Kang KM, Choi J, Kim D, Jung HT, Scientific reports, 8, 1959 (2018)
  17. Klechikov A, Yu J, Thomas D, Sharifi T, Talyzin AV, Nanoscale, 7, 15374 (2015)
  18. Sun PZ, Wang KL, Zhu HW, Adv. Mater., 28(12), 2287 (2016)
  19. Huang H, Ying Y, Peng X, J. Mater. Chem. A, 2, 13772 (2014)
  20. Wang D, Wang Z, Wang L, Hu L, Jin J, Nanoscale, 7, 17649 (2015)
  21. Ang H, Hong L, ACS Appl. Mater. Interfaces, 9, 28079 (2017)
  22. Kumar S, Wani MY, Arranja CY, de J, e Silva A, Avula B, Sobral AJFN, J. Mater. Chem. A, 3, 19615 (2015)
  23. Leong FY, Appl. Phys. Lett., 97, 214102 (2010)
  24. Fei W, Gu Y, Bishop KJ, Curr. Opin. Colloid Interface Sci., 32, 57 (2017)
  25. Bressler I, Kohlbrecher J, Thunemann AF, J. Appl. Crystallogr., 48, 1587 (2015)
  26. Hu R, He Y, Huang M, Zhao G, Zhu H, Langmuir, 3, 10569 (2018)
  27. Matsuura T, Synthetic membranes and membrane separation processes, CRC Press, Boca Raton, 1993.
  28. Bhanushali D, Kloos S, Kurth C, Bhattacharyya D, J. Membr. Sci., 189(1), 1 (2001)
  29. Hildebrand JH, 1936.
  30. Puchtler H, Sweat F, Gropp S, Journal Royal Microscopical Society 87, 309 (1967).
  31. Edward JT, J. Chem. Educ., 47, 261 (1970)
  32. Perkins LR, Geankoplis CJ, Chem. Eng. Sci., 24, 1035 (1969)
  33. Wang L, Fang M, Liu J, He J, Li J, Lei J, ACS Appl. Mater. Interfaces, 7, 24082 (2015)
  34. Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ, J. Membr. Sci., 389, 34 (2012)
  35. Mir FQ, Shukla A, Ind. Eng. Chem. Res., 49(14), 6539 (2010)
  36. Dutta S, Dorfman KD, Kumar S, J. Chem. Phys., 139, 174905 (2013)
  37. Akbari A, Sheath P, Martin ST, Shinde DB, Shaibani M, Banerjee PC, Tkacz R, Bhattacharyya D, Majumder M, Nat. Commun., 7, 10891 (2016)
  38. Rostamy N, Sumner D, Bergstrom DJ, Bugg JD, J. Fluids Struct., 34, 105 (2012)
  39. Gao J, Luedtke WD, Landman U, Tribol. Lett., 9, 3 (2000)
  40. Hlushkou D, Gritti F, Daneyko A, Guiochon G, Tallarek U, J. Phys. Chem. C, 117, 22974 (2013)
  41. Zhou S, Sun H, Cheng LT, Dzubiella J, Li B, McCammon JA, J. Chem. Phys., 145, 054114 (2016)