- Previous Article
- Next Article
- Table of Contents
Journal of Adhesion Science and Technology, Vol.33, No.19, 2157-2179, 2019
Durability of a lightweight construction material made with dune sand and expanded polystyrene
The partial/total substitution of ordinary aggregates by other unused local materials in order to produce new lightweight concretes/mortars is an interesting alternative that can solve technical, economical and environmental problems. On the other hand, the replacement of cement by other binders in the elaboration of concretes and mortars can also provide other properties and benefits more important and more interesting. In this context, previous works have been undertaken and have shown the possibility and the effectiveness of the use of expanded polystyrene aggregates and dune sands on the physicomechanical properties of plaster mortars, especially in term of lightness and thermal insulation. Our current concern is to know: how this composite will behave in certain aggressive environments. Therefore, the main objective of the present work is to study the effect of some chemical environments on the behaviour of a plaster mortar based on dune sands and expanded polystyrene beads. For this study, three different environments have been envisaged: demineralised water (as reference), sulphuric acid solution and magnesium sulphate solution. The obtained results showed that although the surface of the studied samples seems to be degraded, in their interior, the material appears more homogeneous and compact with relatively a good adhesion sand/plaster and EPS/plaster. The presence of the acid or the sulphate in water does not increase the water effect; besides, the acid considerably improves its effect in compression.