Biochemical and Biophysical Research Communications, Vol.512, No.2, 276-282, 2019
A novel human monoclonal Trop2-IgG antibody inhibits ovarian cancer growth in vitro and in vivo
Trop2 is a tumor-related antigen closely related to the development of a variety of tumors and has been identified as a promising target for cancer immunotherapy. In this study, a Trop2-IgG antibody was constructed by a eukaryotic expression system based on our previously constructed Trop2-Fab antibody. SDS-PAGE, cell ELISA, affinity assays, fluorescence staining and FACS analyses were performed to characterize Trop2-IgG. Then, CCK-8, wound healing, Transwell and annexin V-PI assays were employed to evaluate the tumor inhibitory effects of Trop2-IgG on OC in vitro, while tumor-bearing mice were constructed to examine the tumor inhibitory effects of Trop2-IgG on OC in vivo. Trop2-lgG was successfully constructed by a eukaryotic expression system and maintained recognition characteristics to Trop2 antigen. In vitro, Trop2-IgG could inhibited tumor cell growth, migration, and invasion compared to those of control cells and induced tumor cell apoptosis. In vivo, Trop2-IgG exerted critical tumor inhibitory effects in OC xenografts. Our data suggest that the use of Trop2-IgG provides a potential therapeutic strategy for the immunotherapy of Trop2-expressing OC. (C) 2019 Elsevier Inc. All rights reserved.