화학공학소재연구정보센터
Applied Energy, Vol.242, 782-796, 2019
Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage
In the absence of an affordable and deployable energy storage option, the intermittency of renewable energy creates mismatches in supply and demand that limit the viability of a low-carbon electricity grid. High temperature electrically-heated thermal energy storage (E-TES) is a largely unexplored approach to alleviating the problem of low-value renewable energy. Evaluated herein is one E-TES concept, called Firebrick Resistance Heated Energy Storage (FIRES), that stores electricity as sensible high-temperature heat (1000-1700 degrees C) in ceramic firebrick, and discharges it as a hot airstream to either (1) heat industrial plants in place of fossil fuels, or (2) regenerate electricity in a power plant. FIRES storage media and heater options are reviewed, and discharge cycling is simulated with Crank-Nicolson finite difference schemes and evaluated over the parameter design space. We report that systems of 100-1000 s MWh may be cycled daily, and discharged at a constant heat rate typically for 70-90% of the storage capacity. Traditional insulation can reasonably limit heat leakage to less than 3% per day. Preliminary cost estimates indicate a system cost near $10/kWh, substantially less expensive than batteries. Northwestern Iowa market analysis shows payback within 2 years and economic profitability.