화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.4, 646-651, July, 2019
물방울의 온도감응성 제어를 위한 고분자 시스템의 결정화 기반 제조법
Crystallization-based Preparation Method of Polymer Systems for Temperature-responsive Control of Water Droplets
E-mail:
초록
물의 공급은 특정 표면의 자가청소 시스템부터 미세 유체시스템, 마찰 발전기 등의 활용을 위해 필요하다. 자가청소 기술의 경우 주로 초소수성 표면을 구성하여 빗물에 의한 청소능력을 가지는데, 건조 기후에서는 주기적인 청소가 불가능하다. 본 연구에서는 온도감응성 하이드로젤과 초소수성 기판을 사용하는 롤링 물방울 시스템을 구현하였다. 32 ℃ 부근에서 하한 용액 임계 온도를 가지는 poly(N-isopropylacrylamide) 하이드로젤과 결정화방법을 통한 초소수성 기판의 제조법을 사용하였다. 이 시스템은 반복적인 온도변화에 반응하여 물방울을 생성시켜 초소수성 기판 위를 흐르도록 설계되었다. 본 롤링 물방울 시스템은 온도 변화에 반응하는 새로운 물 흐름 시스템으로써 미래 다양한 기술에 효과적으로 적용될 수 있다.
Water supply is needed for the applications of microfluidic systems, triboelectric generators, self-cleaning systems on specific surfaces, etc. Especially, in the cases of self-cleaning technology, the surfaces of super-hydrophobic property are mainly used for cleaning by rainwater. However, in a region where rain is not frequent, periodic cleaning is impossible. In this study, we implemented a rolling water droplets system in which a thermosensitive hydrogel and a super hydrophobic substrate are used together. Poly(N-isopropylacrylamide) hydrogel having a lower critical solution temperature at about 32 ℃ and a crystallization-based method of preparing a superhydrophobic substrate were used. The fabricated system was able to successfully generate droplets and water flow on the superhydrophobic substrate in response to repeated temperature changes. This rolling water droplet system is a new water flow system that responds to temperature changes and can be effectively applied to a variety of future technologies.
  1. Blossey R, Nature Mater., 2, 301 (2003)
  2. Furstner R, Barthlott W, Neinhuis C, Walzel P, Langmuir, 21(3), 956 (2005)
  3. Zhu J, Hsu CM, Yu Z, Fan S, Cui Y, Nano Lett., 10, 1979 (2009)
  4. Shay T, Dickey MD, Velev OD, Lab Chip, 17, 710 (2017)
  5. Joanicot M, Ajdari A, Science, 309, 887 (2005)
  6. Fan FR, Tian ZQ, Wang ZL, Nano Energy, 1, 328 (2012)
  7. Zhu G, Pan C, Uo W, Chen CY, Zhou Y, Yu R, Wang ZL, Nano Lett., 12, 4960 (2012)
  8. Park YB, Im H, Im M, Choi YK, J. Mater. Chem., 21, 633 (2011)
  9. Zheng S, Li C, Fu Q, Hu W, Xiang T, Wang Q, Du M, Liu X, Chen Z, Mater. Des., 93, 261 (2016)
  10. Kim BS, Lee J, Chem. Eng. J., 301, 158 (2016)
  11. Kang S, Kang TH, Kim BS, Oh J, Park S, Choi IS, Lee J, Son JG, Composites Part B, 162, 580 (2019)
  12. An S, Kim BS, Lee J, J. Ind. Eng. Chem., 33, 362 (2016)
  13. Kim J, Cho Y, Kim S, Lee J, ACS Macro Lett., 6, 1119 (2017)
  14. An S, Kim HJ, Chi S, Lee J, Macromol. Rapid Commun., 39, 180010 (2018)
  15. Lee H, Lee J, J. Ind. Eng. Chem., 21, 1183 (2015)
  16. Kim HJ, An S, Lee J, Cryst. Growth Des., 17, 2600 (2017)
  17. Cho YH, Lee JH, J. Ind. Eng. Chem., 60, 498 (2018)
  18. Kim BS, Kim HJ, An S, Chi S, Kim J, Lee J, J. Cryst. Growth, 469, 184 (2017)
  19. Halake K, Bae SM, Lee JY, Cho YH, Jo HI, Heo JW, Park KT, Kim HJ, Ju H, Kim YK, Hasani A, Pahm TD, Choi JH, Hong SH, Choi SC, Lee JH, Macromol. Res., 27(2), 109 (2019)
  20. Yang B, Xu D, Wu X, Li Z, Lei L, Zhang X, J. Ind. Eng. Chem., 25, 67 (2015)
  21. Boutris C, Chatzi EG, Kiparissides C, Polymer, 38(10), 2567 (1997)
  22. Halake KS, Lee J, Carbohydr. Polym., 105, 184 (2014)
  23. Halake K, Birajdar M, Kim BS, Bae H, Lee CC, Kim YJ, Kim S, Kim HJ, Ahn S, An SY, Lee J, J. Ind. Eng. Chem., 20(6), 3913 (2014)
  24. Lee S, Kim HJ, Chang SH, Lee J, Soft Matter, 9, 472 (2013)
  25. Kim GH, Kim HJ, Noh HR, Macromol. Res., 26(3), 278 (2018)
  26. Lee MK, Chung NO, Lee J, Polymer, 51(26), 6258 (2010)
  27. Bai H, Polini A, Delattre B, Tomsia AP, Chem. Mater., 25, 4551 (2013)
  28. Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI, Nature Mater., 4, 787 (2005)
  29. Huang X, Li B, Song X, Wang L, Shi Y, Hu M, Gao J, Xue H, J. Ind. Eng. Chem., 70, 243 (2019)
  30. McHale G, Shirtcliffe NJ, Newton MI, Langmuir, 20(23), 10146 (2004)
  31. Lafuma A, Quere D, Nature Mater, 2, 457 (2003)