Korean Journal of Chemical Engineering, Vol.36, No.7, 1193-1200, July, 2019
AgNi@ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells
E-mail:,
Nano carbon-semiconductor hybrid materials such as graphene and zinc oxide (ZnO) have been vigorously explored for their direct electron transfer properties and high specific surface areas. We fabricated a three-dimensional anodic electrode catalyst nanostructure for a direct glucose fuel cell (DGFC) utilizing two-dimensional monolayer graphene and one-dimensional ZnO nanorods, which accommodate silver/nickel (Ag/Ni) nanoparticle catalyst. Glucose, as an unlimited and safe natural energy resource, has become the most popular fuel for energy storage. Ag and Ni nanoparticles, having superior catalytic activities and anti-poisoning effect, respectively, demonstrate a 73-times enhanced cell performance (550 μW cm-2 or 8mW mg-1) when deposited on zinc oxide nanorods with a small amount of ~0.069 mg in 0.5M of glucose and 1M of KOH solution at 60 °C. This three-dimensional anodic electrode catalyst nanostructure presents promise to open up a new generation of fuel cells with non-Pt, low mass loading of catalyst, and 3D nanostructure electrodes for high electrochemical performances.
Keywords:3D Nanostructures;CVD Graphene;Direct Glucose Fuel Cell;Nickel Nanoparticles;Silver Nanoparticles;Zinc Oxide Nanorods
- Chaudhuri SK, Lovley DR, Nat. Biotechnol., 21, 1229 (2003)
- Van Wyk JP, TRENDS in Biotechnol., 19, 172 (2001)
- Fujiwara N, Siroma Z, Ioroi T, Yasuda K, J. Power Sources, 164(2), 457 (2007)
- Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Yasuda K, Electrochem. Commun., 8, 720 (2006)
- Chen J, Zheng H, Kang J, Yang F, Cao Y, Xiang M, RSC Adv., 7, 3035 (2017)
- Xu S, Minteer SD, ACS Catal., 2, 91 (2012)
- Zhao Y, Fan LZ, Gao DM, Ren JL, Hong B, Electrochim. Acta, 145, 159 (2014)
- Yang YL, Liu XH, Hao MQ, Zhang PP, Int. J. Hydrog. Energy, 40(34), 10979 (2015)
- Hsieh SH, Hsu MC, Liu WL, Chen WJ, Appl. Surf. Sci., 277, 223 (2013)
- Tiwari JN, Pan FM, Chen TM, Tiwari RN, Lin KL, J. Power Sources, 195(3), 729 (2010)
- Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678 (2012)
- Eshghi A, Kheirmand M, Iranian J. Hydrogen Fuel Cell, 3, 11 (2016)
- Hui-Fang C, Jian-Shan Y, Xiao L, Wei-De Z, Fwu-Shan S, Nanotechnology, 17, 2334 (2006)
- Zhu JL, He GQ, Liang LZ, Wan Q, Shen PK, Electrochim. Acta, 158, 374 (2015)
- Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678 (2012)
- Apblett CA, Ingersoll D, Sarangapani S, Kelly M, Atanassov P, J. Electrochem. Soc., 157(1), B86 (2010)
- Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Senoh H, Yasuda K, Electrochem. Commun., 11, 390 (2009)
- Elouarzaki K, Holzinger M, Le Goff A, Thery J, Marks R, Cosnier S, J. Mater. Chem. A, 4, 10635 (2016)
- Tsang CHA, Leung D, Solid State Sci., 71, 123 (2017)
- Zhao Y, Liu X, Wang X, Zhang P, Shi J, Int. J. Hydrog. Energy, 42, X29863 (2017)
- Firdosy SA, Ravi VA, Valdez TI, Kisor A, Narayan SR, NASA’s Jet Propulsion Laboratory, Pasadena, California (2013).
- Gao MY, Liu XH, Irfan M, Shi JF, Wang X, Zhang PP, Int. J. Hydrog. Energy, 43(3), 1805 (2018)
- Chen JY, Zhao CX, Zhi MM, Wang KW, Deng LL, Xu G, Electrochim. Acta, 66, 133 (2012)
- Cho B, Yoon J, Hahm MG, Kim DH, Kim AR, Kahng YH, Park SW, Lee YJ, Park SG, Kwon JD, J. Mater. Chem. C, 2, 5280 (2014)
- Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y, Electroanalysis, 22, 1027 (2010)
- Tan YB, Lee JM, J. Mater. Chem. A, 1, 14814 (2013)
- Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V, Science, 347, 124650 (2015)
- Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB, Nano Energy, 1, 534 (2012)
- Bonaccorso F, Sun Z, Hasan T, Ferrari A, Nat. Photonics, 4, 611 (2010)
- Antolini E, Appl. Catal. B: Environ., 123, 52 (2012)
- Byon HR, Suntivich J, Shao-Horn Y, Chem. Mater., 23, 421 (2011)
- Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Goforth AM, Jiao J, Carbon, 52, 595 (2013)
- Baker H, In ASM Handbook, Vol. 3 Alloy Phase Diagrams, ASM Int. Mater., 1742 (1992).
- McLellan RB, Scripta Metallurgica, 3, 389 (1969)
- Qu L, Liu Y, Baek JB, Dai L, ACS Nano, 4, 1321 (2010)
- Xia C, Qiao Z, Feng C, Kim JS, Wang B, Zhu B, Materials, 11, 40 (2018)
- Xia C, Qiao Z, Shen LP, Liu XQ, Cai YX, Xu Y, Qiao JL, Wang H, Int. J. Hydrog. Energy, 43(28), 12825 (2018)
- Hao W, Mi Y, RSC Adv., 6, 50201 (2016)
- Wang C, Chen W, Han C, Wang G, Tang B, Tang C, Wang Y, Zou W, Zhang XA, Qin S, Scientific Reports, 4, 4537 (2014)
- Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, Nanotechnology, 24, 365602 (2013)
- Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
- Ferrari AC, Solid State Commun., 143, 47 (2007)
- Ferrari AC, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Phys. Rev. Lett., 97, 187401 (2006)
- Malard L, Pimenta M, Dresselhaus G, Dresselhaus M, Phys. Reports, 473, 51 (2009)
- Poncharal P, Ayari A, Michel T, Sauvajol JL, Phys. Rev. B, 78, 113407 (2008)
- Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Cheng W, Yin W, Wang X, Xu JB, Shi Y, Scientific Reports, 6, 32327 (2016)
- Kim YJ, Yoon A, Kim M, Yi GC, Liu C, Nanotechnology, 22, 245603 (2011)
- Quan Q, Lin X, Zhang N, Xu YJ, Nanoscale, 9, 2398 (2017)
- Ching KL, Li G, Ho YL, Kwok HS, CrystEngComm, 18, 779 (2016)
- Fleischmann M, Korinek K, Pletcher D, J. Chem. Soc., 7, 1396 (1972)
- Fleischmann M, Korinek K, Pletcher D, J. Electroanal. Chem. Interfacial Electrochem., 31, 39 (1971)
- Zhao C, Shao C, Li M, Jiao K, Talanta, 71, 1769 (2007)
- Nguyen TL, Kim DS, Hur J, Park MS, Yoon S, Kim IT, J. Power Sources, 389, 28 (2018)
- Liu Y, Zhang A, Shen C, Liu Q, Cao X, Ma Y, Chen L, Lau C, Chen TC, Wei F, Zhou C, ACS Nano, 11, 5530 (2017)
- Chaitoglou S, Bertran E, J. Mater. Sci., 52(13), 8348 (2017)