화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.7, 1193-1200, July, 2019
AgNi@ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells
E-mail:,
Nano carbon-semiconductor hybrid materials such as graphene and zinc oxide (ZnO) have been vigorously explored for their direct electron transfer properties and high specific surface areas. We fabricated a three-dimensional anodic electrode catalyst nanostructure for a direct glucose fuel cell (DGFC) utilizing two-dimensional monolayer graphene and one-dimensional ZnO nanorods, which accommodate silver/nickel (Ag/Ni) nanoparticle catalyst. Glucose, as an unlimited and safe natural energy resource, has become the most popular fuel for energy storage. Ag and Ni nanoparticles, having superior catalytic activities and anti-poisoning effect, respectively, demonstrate a 73-times enhanced cell performance (550 μW cm-2 or 8mW mg-1) when deposited on zinc oxide nanorods with a small amount of ~0.069 mg in 0.5M of glucose and 1M of KOH solution at 60 °C. This three-dimensional anodic electrode catalyst nanostructure presents promise to open up a new generation of fuel cells with non-Pt, low mass loading of catalyst, and 3D nanostructure electrodes for high electrochemical performances.
  1. Chaudhuri SK, Lovley DR, Nat. Biotechnol., 21, 1229 (2003)
  2. Van Wyk JP, TRENDS in Biotechnol., 19, 172 (2001)
  3. Fujiwara N, Siroma Z, Ioroi T, Yasuda K, J. Power Sources, 164(2), 457 (2007)
  4. Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Yasuda K, Electrochem. Commun., 8, 720 (2006)
  5. Chen J, Zheng H, Kang J, Yang F, Cao Y, Xiang M, RSC Adv., 7, 3035 (2017)
  6. Xu S, Minteer SD, ACS Catal., 2, 91 (2012)
  7. Zhao Y, Fan LZ, Gao DM, Ren JL, Hong B, Electrochim. Acta, 145, 159 (2014)
  8. Yang YL, Liu XH, Hao MQ, Zhang PP, Int. J. Hydrog. Energy, 40(34), 10979 (2015)
  9. Hsieh SH, Hsu MC, Liu WL, Chen WJ, Appl. Surf. Sci., 277, 223 (2013)
  10. Tiwari JN, Pan FM, Chen TM, Tiwari RN, Lin KL, J. Power Sources, 195(3), 729 (2010)
  11. Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678 (2012)
  12. Eshghi A, Kheirmand M, Iranian J. Hydrogen Fuel Cell, 3, 11 (2016)
  13. Hui-Fang C, Jian-Shan Y, Xiao L, Wei-De Z, Fwu-Shan S, Nanotechnology, 17, 2334 (2006)
  14. Zhu JL, He GQ, Liang LZ, Wan Q, Shen PK, Electrochim. Acta, 158, 374 (2015)
  15. Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678 (2012)
  16. Apblett CA, Ingersoll D, Sarangapani S, Kelly M, Atanassov P, J. Electrochem. Soc., 157(1), B86 (2010)
  17. Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Senoh H, Yasuda K, Electrochem. Commun., 11, 390 (2009)
  18. Elouarzaki K, Holzinger M, Le Goff A, Thery J, Marks R, Cosnier S, J. Mater. Chem. A, 4, 10635 (2016)
  19. Tsang CHA, Leung D, Solid State Sci., 71, 123 (2017)
  20. Zhao Y, Liu X, Wang X, Zhang P, Shi J, Int. J. Hydrog. Energy, 42, X29863 (2017)
  21. Firdosy SA, Ravi VA, Valdez TI, Kisor A, Narayan SR, NASA’s Jet Propulsion Laboratory, Pasadena, California (2013).
  22. Gao MY, Liu XH, Irfan M, Shi JF, Wang X, Zhang PP, Int. J. Hydrog. Energy, 43(3), 1805 (2018)
  23. Chen JY, Zhao CX, Zhi MM, Wang KW, Deng LL, Xu G, Electrochim. Acta, 66, 133 (2012)
  24. Cho B, Yoon J, Hahm MG, Kim DH, Kim AR, Kahng YH, Park SW, Lee YJ, Park SG, Kwon JD, J. Mater. Chem. C, 2, 5280 (2014)
  25. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y, Electroanalysis, 22, 1027 (2010)
  26. Tan YB, Lee JM, J. Mater. Chem. A, 1, 14814 (2013)
  27. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V, Science, 347, 124650 (2015)
  28. Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB, Nano Energy, 1, 534 (2012)
  29. Bonaccorso F, Sun Z, Hasan T, Ferrari A, Nat. Photonics, 4, 611 (2010)
  30. Antolini E, Appl. Catal. B: Environ., 123, 52 (2012)
  31. Byon HR, Suntivich J, Shao-Horn Y, Chem. Mater., 23, 421 (2011)
  32. Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Goforth AM, Jiao J, Carbon, 52, 595 (2013)
  33. Baker H, In ASM Handbook, Vol. 3 Alloy Phase Diagrams, ASM Int. Mater., 1742 (1992).
  34. McLellan RB, Scripta Metallurgica, 3, 389 (1969)
  35. Qu L, Liu Y, Baek JB, Dai L, ACS Nano, 4, 1321 (2010)
  36. Xia C, Qiao Z, Feng C, Kim JS, Wang B, Zhu B, Materials, 11, 40 (2018)
  37. Xia C, Qiao Z, Shen LP, Liu XQ, Cai YX, Xu Y, Qiao JL, Wang H, Int. J. Hydrog. Energy, 43(28), 12825 (2018)
  38. Hao W, Mi Y, RSC Adv., 6, 50201 (2016)
  39. Wang C, Chen W, Han C, Wang G, Tang B, Tang C, Wang Y, Zou W, Zhang XA, Qin S, Scientific Reports, 4, 4537 (2014)
  40. Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, Nanotechnology, 24, 365602 (2013)
  41. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
  42. Ferrari AC, Solid State Commun., 143, 47 (2007)
  43. Ferrari AC, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Phys. Rev. Lett., 97, 187401 (2006)
  44. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M, Phys. Reports, 473, 51 (2009)
  45. Poncharal P, Ayari A, Michel T, Sauvajol JL, Phys. Rev. B, 78, 113407 (2008)
  46. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Cheng W, Yin W, Wang X, Xu JB, Shi Y, Scientific Reports, 6, 32327 (2016)
  47. Kim YJ, Yoon A, Kim M, Yi GC, Liu C, Nanotechnology, 22, 245603 (2011)
  48. Quan Q, Lin X, Zhang N, Xu YJ, Nanoscale, 9, 2398 (2017)
  49. Ching KL, Li G, Ho YL, Kwok HS, CrystEngComm, 18, 779 (2016)
  50. Fleischmann M, Korinek K, Pletcher D, J. Chem. Soc., 7, 1396 (1972)
  51. Fleischmann M, Korinek K, Pletcher D, J. Electroanal. Chem. Interfacial Electrochem., 31, 39 (1971)
  52. Zhao C, Shao C, Li M, Jiao K, Talanta, 71, 1769 (2007)
  53. Nguyen TL, Kim DS, Hur J, Park MS, Yoon S, Kim IT, J. Power Sources, 389, 28 (2018)
  54. Liu Y, Zhang A, Shen C, Liu Q, Cao X, Ma Y, Chen L, Lau C, Chen TC, Wei F, Zhou C, ACS Nano, 11, 5530 (2017)
  55. Chaitoglou S, Bertran E, J. Mater. Sci., 52(13), 8348 (2017)