화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.75, 158-163, July, 2019
Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus
E-mail:,
In this study, bacterial cellulose production from pure and crude glycerol by Gluconacetobacter xylinus KCCM 41431 was achieved under static culture condition. The effect of crude glycerol-derived inhibitors was investigated (glycerol concentration, pH, and salts concentration). Significant inhibitory effects in static cultivation were observed in the following conditions: above 40 g/L of initial glycerol concentration, pH 6, or 10 g/L of salts concentration. Especially, inhibition in bacterial cellulose production by G. xylinus was strongly represented compared to the other bacteria. In addition, improvement of bacterial cellulose production was achieved with optimization of the culture medium composition. The highest bacterial cellulose productivity using pure and crude glycerol was 1.05 and 0.99 g/L/day, respectively.
  1. Chu S, Majumdar A, Nature, 488(7411), 294 (2012)
  2. Hasanov AS, Do HX, Shaiban MS, Energy Econ., 57, 16 (2016)
  3. Mohr SH, Wang J, Ellem G, Ward J, Giurco D, Fuel, 141, 120 (2015)
  4. Ghazali WNMW, Mamat R, Masjuki HH, Najafi G, Renew. Sust. Energ. Rev., 51, 585 (2015)
  5. Dang NM, Lee K, Biotechnol. Bioprocess Eng., 23, 405 (2018)
  6. Lee YR, Lee JH, Yang HJ, Jang M, Kim JR, Byun EH, Lee JW, Na JG, Kim SW, Park CW, J. Ind. Eng. Chem., 51, 49 (2017)
  7. Chen Z, Liu D, Biotechnol. Biofuels., 9, 205 (2016)
  8. REN21, Renewables 2015-global status report, (2015).
  9. Luo XL, Ge XM, Cui SQ, Li YB, Bioresour. Technol., 215, 144 (2016)
  10. Quispe CAH, Coronado CJR, Carvalho JA, Renew. Sust. Energ. Rev., 27, 475 (2013)
  11. Nanda M, Yuan Z, Qin W, Austin J. Chem. Eng., 1, 1 (2014)
  12. Zong H, Liu X, Chen W, Zhuge B, Sun J, Biotechnol. Bioprocess Eng., 22, 549 (2017)
  13. Lee SJ, Kim SB, Kang SW, Han SO, Park C, Kim SW, Bioprocess Biosyst. Eng., 35, 85 (2012)
  14. Johnson E, Sarchami T, Kießlich S, Munch G, Rehmann L, World J. Microbiol. Biotechnol., 32, 103 (2016)
  15. Yang X, Kim DS, Choi HS, Kim CK, Thapa LP, Park C, Kim SW, Chem. Eng. J., 314, 660 (2017)
  16. Garlapati VK, Shankar U, Budhiraja A, Biotechnol. Rep., 9, 9 (2016)
  17. Shah N, Ul-Islam M, Khattak WA, Park JK, Carbohydr. Polym., 98, 1585 (2013)
  18. Campano C, Balea A, Blanco A, Negro C, Cellulose., 23, 1 (2016)
  19. Jozala AF, de Lencastre-Novaes LC, Lopes AM, Santos-Ebinuma VD, Mazzola PG, Pessoa A, Grotto D, Gerenutti M, Chaud MV, Appl. Microbiol. Biotechnol., 100(5), 2063 (2016)
  20. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D, Cellulose, 21, 1 (2014)
  21. Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J, J. Surg. Res., 189, 340 (2014)
  22. Klemm D, Schumann D, Udhardt U, Marsch S, Prog. Polym. Sci, 26, 1561 (2001)
  23. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH, Carbohydr. Polym., 94, 603 (2013)
  24. Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS, Mater. Express, 4, 415 (2014)
  25. Shi Z, Zhang Y, Phillips GO, Yang G, Food Hydrocolloids, 35, 539 (2014)
  26. Aramwit P, Bang N, BMC Biotechnol., 14, 104 (2014)
  27. Jonas R, Farah LF, Polym. Degrad. Stabil., 59, 101 (1998)
  28. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J, Chem. Soc. Rev., 40, 3941 (2011)
  29. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ, J. Appl. Microbiol., 107(2), 576 (2009)
  30. Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR, Appl. Microbiol. Biotechnol., 97(14), 6189 (2013)
  31. Vazquez A, Foresti ML, Cerrutti P, Galvagno M, J. Polym. Environ., 21, 545 (2013)
  32. Lee JH, Kim SW, News Inf. Chem. Eng., 27, 434 (2009)
  33. Jung H, Seong P, Go A, Lee SJ, Kim SW, Han SO, Cho J, Korean Soc. Biotechnol. Bioeng. J., 228, 223 (2011)
  34. Schramm M, Hestrin S, J. Gen. Microbiol., 11, 123 (1954)
  35. Madigan MT, Martinko JM, Parker J, Brock Biology of Microorganisms, Prentice Hall Upper Saddle River, NJ, 1997.
  36. Shuler ML, Kargi F, Kargi F, Bioprocess Engineering: Basic Concepts, Prentice Hall Upper Saddle River, NJ, 2002.
  37. Waites MJ, Morgan NL, Rockey JS, Higton G, Industrial Microbiology: An Introduction, John Wiley & Sons, 2009.
  38. Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW, Biotechnol. Biofuels, 6, 109 (2013)
  39. Yang X, Lee SJ, Yoo HY, Choi HS, Park C, Kim SW, Bioresour. Technol., 159, 17 (2014)
  40. Shkedy-Vinkler C, Avi-Dor Y, Biochem. J., 150, 219 (1975)
  41. Nagata S, Maekawa Y, Ikeuchi T, Wang YB, Ishida A, J. Biosci. Bioeng., 94(5), 384 (2002)
  42. Kang SW, Lee H, Kim D, Lee D, Kim S, Chun GT, Lee J, Kim SW, Park C, Biotechnol. Bioprocess Eng., 15, 761 (2010)
  43. De Vuyst L, Vandamme EJ, Appl. Microbiol. Biotechnol., 40, 17 (1993)
  44. Kim MH, Kong YJ, Baek H, Hyun HH, J. Biotechnol., 121, 54 (2006)
  45. Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F, Biosci. Biotechnol. Biochem., 60, 575 (1996)
  46. Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ, Bioresour. Technol., 101(10), 3602 (2010)
  47. Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A, Int. J. Mol. Sci., 16(7), 14832 (2015)
  48. Esa F, Tasirin SM, Rahman NA, Agric. Agric. Sci. Procedia., 2, 113 (2014)
  49. Sugiyama J, Vuong R, Chanzy H, Macromolecules, 24, 4168 (1991)
  50. Brown RM, Willison JH, Richardson CL, Proc. Natl. Acad. Sci., 73, 4565 (1976)