화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.195, 174-181, 2019
Kinetics and dynamics of the regeneration of boron-oxygen defects in compensated n-type silicon
The effects of doping level, illumination intensity and temperature on the regeneration kinetics and dynamics of BO defects in compensated n-Si have been investigated. The regeneration rate, corrected with interstitial oxygen concentration and average injection level, is almost constant in n-type samples with different doping levels under the same regeneration condition. It is proportional to the average injection level during regeneration when the doping level and temperature are fixed. In comparison with previous studies using n-type silicon, the regeneration completeness is significantly improved, especially in samples with net doping levels higher than 1 x 10(16) cm(-3), due to the higher regeneration temperature and more stable surface passivation films. The remaining incompleteness is mostly dominated by the occupation of the annealed state (as opposed to the activated state). For rapid and complete regeneration, the optimal condition is applying high illumination intensities at around 200 degrees C.