화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.196, 84-93, 2019
Transparent conductive tantalum doped tin oxide as selectively solar-transmitting coating for high temperature solar thermal applications
The transparent conductive oxide (TCO) SnO2:Ta is developed as a selectively solar-transmitting coating for concentrated solar power (CSP) absorbers. Upon covering with an antireflective layer, a calculated absorptivity of 95% and an emissivity of 30% are achieved for the model configuration of SnO2:Ta on top of a perfect black body (BB). High-temperature stability of the developed TCO up to 1073 K is shown in situ by spectroscopic ellipsometry and Rutherford backscattering spectrometry. The universality of the concept is demonstrated by transforming silicon and glassy carbon from non-selective into solar-selective absorbers by depositing the TCO on top of them. Finally, the energy conversion efficiencies of SnO2:Ta on top of a BB and an ideal non-selective BB absorber are extensively compared as a function of solar concentration factor C and absorber temperature T-H. Equal CSP efficiencies can be achieved by the TCO on BB configuration with approximately 50% lower solar concentration. This improvement could be used to reduce the number of mirrors in a solar plant, and thus, the levelized costs of electricity for CSP technology.