화학공학소재연구정보센터
Rheologica Acta, Vol.58, No.1-2, 21-28, 2019
On the Kramers-Kronig relations
We provide a new derivation of the Kramers-Kronig relations on the basis of the Sokhotski-Plemelj equation with detailed mathematical justifications. The relations hold for a causal function, whose Fourier transform is regular (holomorphic) and square-integrable. This implies analyticity in the lower complex plane and a Fourier transform that vanishes at the high-frequency limit. In viscoelasticity, we show that the complex and frequency-dependent modulus describing the stiffness does not satisfy the relation but the modulus minus its high-frequency value does it. This is due to the fact that despite its causality, the modulus is not square-integrable due to a non-null instantaneous response. The relations are obtained in addition for the wave velocity and attenuation factor. The Zener, Maxwell, and Kelvin-Voigt viscoelastic models illustrate these properties. We verify the Kramers-Kronig relations on experimental data of sound attenuation in seabottoms sediments.