화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.123, 229-252, 2019
Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review
This paper critically reviews all artificial intelligence (AI) and machine learning (ML) techniques for the better control of membrane fouling in filtration processes, with the focus on water and wastewater treatment systems. Artificial neural networks (ANNs), fuzzy logic, genetic programming and model trees were found to be four successfully employed modeling techniques. The results show that well-known ANNs such as multilayer perceptron and radial basis function can predict membrane fouling with an R-2 equal to 0.99 and an error approaching zero. Genetic algorithm (GA) and particle swarm optimization (PSO) are optimization methods successfully applied to optimize parameters related to membrane fouling. These optimization techniques indicated high capabilities in tuning various parameters such as transmembrane pressure, crossflow velocity, feed temperature, and feed pH. The results of this survey demonstrate that hybrid intelligent models utilizing intelligent optimization methods such as GA and PSO for adjusting their weights and functions perform better than single models. Clustering analysis, image recognition, and feature selection are other employed intelligent techniques with positive role in the control of membrane fouling. The application of AI and ML techniques in an advanced control system can reduce the costs of treatment by monitoring of membrane fouling, and taking the best action when necessary. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.