화학공학소재연구정보센터
Powder Technology, Vol.344, 121-132, 2019
Theoretical study on particle velocity in micro-abrasive jet machining
Micro-abrasive jet machining (AJM) is an advanced subtractive machining technology with ample opportunities to form regular micro-patterns on freeform surfaces. AJM removes material mainly through erosion and abrasion, which transform kinetic energy to fracture and deform substrates. The kinetic energy of a solid particle is tightly connected to its velocity, which is the most significant source of error in precise prediction of a machined feature. The present study involves both theoretical analysis and two-dimensional axisymmetric numerical simulation of particle velocity fields at the lower end of the micro-scale. The developed model represents the finest particles in a cylindrical nozzle down to an inner diameter of 100 pm. The computed results agree well with the experimental data. It is shown that, due to viscous friction, such nozzles are significantly less efficient in terms of particle saturation with kinetic energy. The study highlights the effects of nozzle diameter and length, air pressure, particle size and density on particle velocity development through the jet field. Finally, practical recommendations and multiple regression models of maximum particle velocity, location from the nozzle exit and simplex velocity profile approximation are offered for management of partide kinetic energy. (C) 2018 Elsevier B.V. All rights reserved.